test_checkpoint.py 10.9 KB
Newer Older
1
import sys
2
from collections import OrderedDict
3
from tempfile import TemporaryDirectory
4
from unittest.mock import MagicMock
5

6
import pytest
BigBigDream's avatar
BigBigDream committed
7
import torch
8
9
10
11
import torch.nn as nn
from torch.nn.parallel import DataParallel

from mmcv.parallel.registry import MODULE_WRAPPERS
12
13
from mmcv.runner.checkpoint import (_load_checkpoint_with_prefix,
                                    get_state_dict, load_from_pavi)
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


@MODULE_WRAPPERS.register_module()
class DDPWrapper(object):

    def __init__(self, module):
        self.module = module


class Block(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(3, 3, 1)
        self.norm = nn.BatchNorm2d(3)


class Model(nn.Module):

    def __init__(self):
        super().__init__()
        self.block = Block()
        self.conv = nn.Conv2d(3, 3, 1)


39
40
41
42
43
44
45
46
47
class Mockpavimodel(object):

    def __init__(self, name='fakename'):
        self.name = name

    def download(self, file):
        pass


48
49
50
51
52
def assert_tensor_equal(tensor_a, tensor_b):
    assert tensor_a.eq(tensor_b).all()


def test_get_state_dict():
BigBigDream's avatar
BigBigDream committed
53
54
55
56
57
58
59
60
61
62
63
64
65
    if torch.__version__ == 'parrots':
        state_dict_keys = set([
            'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
            'block.norm.bias', 'block.norm.running_mean',
            'block.norm.running_var', 'conv.weight', 'conv.bias'
        ])
    else:
        state_dict_keys = set([
            'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
            'block.norm.bias', 'block.norm.running_mean',
            'block.norm.running_var', 'block.norm.num_batches_tracked',
            'conv.weight', 'conv.bias'
        ])
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    model = Model()
    state_dict = get_state_dict(model)
    assert isinstance(state_dict, OrderedDict)
    assert set(state_dict.keys()) == state_dict_keys

    assert_tensor_equal(state_dict['block.conv.weight'],
                        model.block.conv.weight)
    assert_tensor_equal(state_dict['block.conv.bias'], model.block.conv.bias)
    assert_tensor_equal(state_dict['block.norm.weight'],
                        model.block.norm.weight)
    assert_tensor_equal(state_dict['block.norm.bias'], model.block.norm.bias)
    assert_tensor_equal(state_dict['block.norm.running_mean'],
                        model.block.norm.running_mean)
    assert_tensor_equal(state_dict['block.norm.running_var'],
                        model.block.norm.running_var)
BigBigDream's avatar
BigBigDream committed
82
83
84
    if torch.__version__ != 'parrots':
        assert_tensor_equal(state_dict['block.norm.num_batches_tracked'],
                            model.block.norm.num_batches_tracked)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    assert_tensor_equal(state_dict['conv.weight'], model.conv.weight)
    assert_tensor_equal(state_dict['conv.bias'], model.conv.bias)

    wrapped_model = DDPWrapper(model)
    state_dict = get_state_dict(wrapped_model)
    assert isinstance(state_dict, OrderedDict)
    assert set(state_dict.keys()) == state_dict_keys
    assert_tensor_equal(state_dict['block.conv.weight'],
                        wrapped_model.module.block.conv.weight)
    assert_tensor_equal(state_dict['block.conv.bias'],
                        wrapped_model.module.block.conv.bias)
    assert_tensor_equal(state_dict['block.norm.weight'],
                        wrapped_model.module.block.norm.weight)
    assert_tensor_equal(state_dict['block.norm.bias'],
                        wrapped_model.module.block.norm.bias)
    assert_tensor_equal(state_dict['block.norm.running_mean'],
                        wrapped_model.module.block.norm.running_mean)
    assert_tensor_equal(state_dict['block.norm.running_var'],
                        wrapped_model.module.block.norm.running_var)
BigBigDream's avatar
BigBigDream committed
104
105
106
107
    if torch.__version__ != 'parrots':
        assert_tensor_equal(
            state_dict['block.norm.num_batches_tracked'],
            wrapped_model.module.block.norm.num_batches_tracked)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    assert_tensor_equal(state_dict['conv.weight'],
                        wrapped_model.module.conv.weight)
    assert_tensor_equal(state_dict['conv.bias'],
                        wrapped_model.module.conv.bias)

    # wrapped inner module
    for name, module in wrapped_model.module._modules.items():
        module = DataParallel(module)
        wrapped_model.module._modules[name] = module
    state_dict = get_state_dict(wrapped_model)
    assert isinstance(state_dict, OrderedDict)
    assert set(state_dict.keys()) == state_dict_keys
    assert_tensor_equal(state_dict['block.conv.weight'],
                        wrapped_model.module.block.module.conv.weight)
    assert_tensor_equal(state_dict['block.conv.bias'],
                        wrapped_model.module.block.module.conv.bias)
    assert_tensor_equal(state_dict['block.norm.weight'],
                        wrapped_model.module.block.module.norm.weight)
    assert_tensor_equal(state_dict['block.norm.bias'],
                        wrapped_model.module.block.module.norm.bias)
    assert_tensor_equal(state_dict['block.norm.running_mean'],
                        wrapped_model.module.block.module.norm.running_mean)
    assert_tensor_equal(state_dict['block.norm.running_var'],
                        wrapped_model.module.block.module.norm.running_var)
BigBigDream's avatar
BigBigDream committed
132
133
134
135
    if torch.__version__ != 'parrots':
        assert_tensor_equal(
            state_dict['block.norm.num_batches_tracked'],
            wrapped_model.module.block.module.norm.num_batches_tracked)
136
137
138
139
    assert_tensor_equal(state_dict['conv.weight'],
                        wrapped_model.module.conv.module.weight)
    assert_tensor_equal(state_dict['conv.bias'],
                        wrapped_model.module.conv.module.bias)
140
141
142


def test_load_pavimodel_dist():
143

144
145
146
147
148
    sys.modules['pavi'] = MagicMock()
    sys.modules['pavi.modelcloud'] = MagicMock()
    pavimodel = Mockpavimodel()
    import pavi
    pavi.modelcloud.get = MagicMock(return_value=pavimodel)
149
150
151
152
    with pytest.raises(AssertionError):
        # test pavi prefix
        _ = load_from_pavi('MyPaviFolder/checkpoint.pth')

153
154
    with pytest.raises(FileNotFoundError):
        # there is not such checkpoint for us to load
155
        _ = load_from_pavi('pavi://checkpoint.pth')
156
157


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def test_load_checkpoint_with_prefix():

    class FooModule(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(1, 2)
            self.conv2d = nn.Conv2d(3, 1, 3)
            self.conv2d_2 = nn.Conv2d(3, 2, 3)

    model = FooModule()
    nn.init.constant_(model.linear.weight, 1)
    nn.init.constant_(model.linear.bias, 2)
    nn.init.constant_(model.conv2d.weight, 3)
    nn.init.constant_(model.conv2d.bias, 4)
    nn.init.constant_(model.conv2d_2.weight, 5)
    nn.init.constant_(model.conv2d_2.bias, 6)

    with TemporaryDirectory():
        torch.save(model.state_dict(), 'model.pth')
        prefix = 'conv2d'
        state_dict = _load_checkpoint_with_prefix(prefix, 'model.pth')
        assert torch.equal(model.conv2d.state_dict()['weight'],
                           state_dict['weight'])
        assert torch.equal(model.conv2d.state_dict()['bias'],
                           state_dict['bias'])

        # test whether prefix is in pretrained model
        with pytest.raises(AssertionError):
            prefix = 'back'
            _load_checkpoint_with_prefix(prefix, 'model.pth')


191
192
def test_load_classes_name():
    import os
193
194
195
196

    import tempfile

    from mmcv.runner import load_checkpoint, save_checkpoint
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
    model = Model()
    save_checkpoint(model, checkpoint_path)
    checkpoint = load_checkpoint(model, checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']

    model.CLASSES = ('class1', 'class2')
    save_checkpoint(model, checkpoint_path)
    checkpoint = load_checkpoint(model, checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
    assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')

    model = Model()
    wrapped_model = DDPWrapper(model)
    save_checkpoint(wrapped_model, checkpoint_path)
    checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']

    wrapped_model.module.CLASSES = ('class1', 'class2')
    save_checkpoint(wrapped_model, checkpoint_path)
    checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
    assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')

    # remove the temp file
    os.remove(checkpoint_path)
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291


def test_checkpoint_loader():
    from mmcv.runner import _load_checkpoint, save_checkpoint, CheckpointLoader
    import tempfile
    import os
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
    model = Model()
    save_checkpoint(model, checkpoint_path)
    checkpoint = _load_checkpoint(checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
    # remove the temp file
    os.remove(checkpoint_path)

    filenames = [
        'http://xx.xx/xx.pth', 'https://xx.xx/xx.pth',
        'modelzoo://xx.xx/xx.pth', 'torchvision://xx.xx/xx.pth',
        'open-mmlab://xx.xx/xx.pth', 'openmmlab://xx.xx/xx.pth',
        'mmcls://xx.xx/xx.pth', 'pavi://xx.xx/xx.pth', 's3://xx.xx/xx.pth',
        'ss3://xx.xx/xx.pth', ' s3://xx.xx/xx.pth'
    ]
    fn_names = [
        'load_from_http', 'load_from_http', 'load_from_torchvision',
        'load_from_torchvision', 'load_from_openmmlab', 'load_from_openmmlab',
        'load_from_mmcls', 'load_from_pavi', 'load_from_ceph',
        'load_from_local', 'load_from_local'
    ]

    for filename, fn_name in zip(filenames, fn_names):
        loader = CheckpointLoader._get_checkpoint_loader(filename)
        assert loader.__name__ == fn_name

    @CheckpointLoader.register_scheme(prefixes='ftp://')
    def load_from_ftp(filename, map_location):
        return dict(filename=filename)

    # test register_loader
    filename = 'ftp://xx.xx/xx.pth'
    loader = CheckpointLoader._get_checkpoint_loader(filename)
    assert loader.__name__ == 'load_from_ftp'

    def load_from_ftp1(filename, map_location):
        return dict(filename=filename)

    # test duplicate registered error
    with pytest.raises(KeyError):
        CheckpointLoader.register_scheme('ftp://', load_from_ftp1)

    # test force param
    CheckpointLoader.register_scheme('ftp://', load_from_ftp1, force=True)
    checkpoint = CheckpointLoader.load_checkpoint(filename)
    assert checkpoint['filename'] == filename

    # test print function name
    loader = CheckpointLoader._get_checkpoint_loader(filename)
    assert loader.__name__ == 'load_from_ftp1'

    # test sort
    @CheckpointLoader.register_scheme(prefixes='a/b')
    def load_from_ab(filename, map_location):
        return dict(filename=filename)

    @CheckpointLoader.register_scheme(prefixes='a/b/c')
    def load_from_abc(filename, map_location):
        return dict(filename=filename)

    filename = 'a/b/c/d'
    loader = CheckpointLoader._get_checkpoint_loader(filename)
    assert loader.__name__ == 'load_from_abc'