test_checkpoint.py 6.54 KB
Newer Older
1
import sys
2
from collections import OrderedDict
3
from unittest.mock import MagicMock
4

5
import pytest
6
7
8
9
import torch.nn as nn
from torch.nn.parallel import DataParallel

from mmcv.parallel.registry import MODULE_WRAPPERS
10
from mmcv.runner.checkpoint import get_state_dict, load_pavimodel_dist
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


@MODULE_WRAPPERS.register_module()
class DDPWrapper(object):

    def __init__(self, module):
        self.module = module


class Block(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(3, 3, 1)
        self.norm = nn.BatchNorm2d(3)


class Model(nn.Module):

    def __init__(self):
        super().__init__()
        self.block = Block()
        self.conv = nn.Conv2d(3, 3, 1)


36
37
38
39
40
41
42
43
44
class Mockpavimodel(object):

    def __init__(self, name='fakename'):
        self.name = name

    def download(self, file):
        pass


45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def assert_tensor_equal(tensor_a, tensor_b):
    assert tensor_a.eq(tensor_b).all()


def test_get_state_dict():
    state_dict_keys = set([
        'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
        'block.norm.bias', 'block.norm.running_mean', 'block.norm.running_var',
        'block.norm.num_batches_tracked', 'conv.weight', 'conv.bias'
    ])

    model = Model()
    state_dict = get_state_dict(model)
    assert isinstance(state_dict, OrderedDict)
    assert set(state_dict.keys()) == state_dict_keys

    assert_tensor_equal(state_dict['block.conv.weight'],
                        model.block.conv.weight)
    assert_tensor_equal(state_dict['block.conv.bias'], model.block.conv.bias)
    assert_tensor_equal(state_dict['block.norm.weight'],
                        model.block.norm.weight)
    assert_tensor_equal(state_dict['block.norm.bias'], model.block.norm.bias)
    assert_tensor_equal(state_dict['block.norm.running_mean'],
                        model.block.norm.running_mean)
    assert_tensor_equal(state_dict['block.norm.running_var'],
                        model.block.norm.running_var)
    assert_tensor_equal(state_dict['block.norm.num_batches_tracked'],
                        model.block.norm.num_batches_tracked)
    assert_tensor_equal(state_dict['conv.weight'], model.conv.weight)
    assert_tensor_equal(state_dict['conv.bias'], model.conv.bias)

    wrapped_model = DDPWrapper(model)
    state_dict = get_state_dict(wrapped_model)
    assert isinstance(state_dict, OrderedDict)
    assert set(state_dict.keys()) == state_dict_keys
    assert_tensor_equal(state_dict['block.conv.weight'],
                        wrapped_model.module.block.conv.weight)
    assert_tensor_equal(state_dict['block.conv.bias'],
                        wrapped_model.module.block.conv.bias)
    assert_tensor_equal(state_dict['block.norm.weight'],
                        wrapped_model.module.block.norm.weight)
    assert_tensor_equal(state_dict['block.norm.bias'],
                        wrapped_model.module.block.norm.bias)
    assert_tensor_equal(state_dict['block.norm.running_mean'],
                        wrapped_model.module.block.norm.running_mean)
    assert_tensor_equal(state_dict['block.norm.running_var'],
                        wrapped_model.module.block.norm.running_var)
    assert_tensor_equal(state_dict['block.norm.num_batches_tracked'],
                        wrapped_model.module.block.norm.num_batches_tracked)
    assert_tensor_equal(state_dict['conv.weight'],
                        wrapped_model.module.conv.weight)
    assert_tensor_equal(state_dict['conv.bias'],
                        wrapped_model.module.conv.bias)

    # wrapped inner module
    for name, module in wrapped_model.module._modules.items():
        module = DataParallel(module)
        wrapped_model.module._modules[name] = module
    state_dict = get_state_dict(wrapped_model)
    assert isinstance(state_dict, OrderedDict)
    assert set(state_dict.keys()) == state_dict_keys
    assert_tensor_equal(state_dict['block.conv.weight'],
                        wrapped_model.module.block.module.conv.weight)
    assert_tensor_equal(state_dict['block.conv.bias'],
                        wrapped_model.module.block.module.conv.bias)
    assert_tensor_equal(state_dict['block.norm.weight'],
                        wrapped_model.module.block.module.norm.weight)
    assert_tensor_equal(state_dict['block.norm.bias'],
                        wrapped_model.module.block.module.norm.bias)
    assert_tensor_equal(state_dict['block.norm.running_mean'],
                        wrapped_model.module.block.module.norm.running_mean)
    assert_tensor_equal(state_dict['block.norm.running_var'],
                        wrapped_model.module.block.module.norm.running_var)
    assert_tensor_equal(
        state_dict['block.norm.num_batches_tracked'],
        wrapped_model.module.block.module.norm.num_batches_tracked)
    assert_tensor_equal(state_dict['conv.weight'],
                        wrapped_model.module.conv.module.weight)
    assert_tensor_equal(state_dict['conv.bias'],
                        wrapped_model.module.conv.module.bias)
125
126
127
128
129
130
131
132
133
134
135


def test_load_pavimodel_dist():
    sys.modules['pavi'] = MagicMock()
    sys.modules['pavi.modelcloud'] = MagicMock()
    pavimodel = Mockpavimodel()
    import pavi
    pavi.modelcloud.get = MagicMock(return_value=pavimodel)
    with pytest.raises(FileNotFoundError):
        # there is not such checkpoint for us to load
        _ = load_pavimodel_dist('MyPaviFolder/checkpoint.pth')
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167


def test_load_classes_name():
    from mmcv.runner import load_checkpoint, save_checkpoint
    import tempfile
    import os
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
    model = Model()
    save_checkpoint(model, checkpoint_path)
    checkpoint = load_checkpoint(model, checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']

    model.CLASSES = ('class1', 'class2')
    save_checkpoint(model, checkpoint_path)
    checkpoint = load_checkpoint(model, checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
    assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')

    model = Model()
    wrapped_model = DDPWrapper(model)
    save_checkpoint(wrapped_model, checkpoint_path)
    checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']

    wrapped_model.module.CLASSES = ('class1', 'class2')
    save_checkpoint(wrapped_model, checkpoint_path)
    checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
    assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
    assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')

    # remove the temp file
    os.remove(checkpoint_path)