test_optflow.py 9.64 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
# Copyright (c) Open-MMLab. All rights reserved.
Kai Chen's avatar
Kai Chen committed
2
3
4
5
6
7
import os
import os.path as osp
import tempfile

import numpy as np
import pytest
Kai Chen's avatar
Kai Chen committed
8
9
10
from numpy.testing import assert_array_almost_equal, assert_array_equal

import mmcv
Kai Chen's avatar
Kai Chen committed
11
12


Kai Chen's avatar
Kai Chen committed
13
def test_flowread():
Kai Chen's avatar
Kai Chen committed
14
    data_dir = osp.join(osp.dirname(__file__), '../data')
Kai Chen's avatar
Kai Chen committed
15
16
17
    flow_shape = (60, 80, 2)

    # read .flo file
Kai Chen's avatar
Kai Chen committed
18
    flow = mmcv.flowread(osp.join(data_dir, 'optflow.flo'))
Kai Chen's avatar
Kai Chen committed
19
20
21
22
    assert flow.shape == flow_shape

    # pseudo read
    flow_same = mmcv.flowread(flow)
Kai Chen's avatar
Kai Chen committed
23
    assert_array_equal(flow, flow_same)
Kai Chen's avatar
Kai Chen committed
24
25

    # read quantized flow concatenated vertically
Kai Chen's avatar
Kai Chen committed
26
    flow = mmcv.flowread(
Kai Chen's avatar
Kai Chen committed
27
        osp.join(data_dir, 'optflow_concat0.jpg'), quantize=True, denorm=True)
Kai Chen's avatar
Kai Chen committed
28
29
30
    assert flow.shape == flow_shape

    # read quantized flow concatenated horizontally
Kai Chen's avatar
Kai Chen committed
31
    flow = mmcv.flowread(
Kai Chen's avatar
Kai Chen committed
32
        osp.join(data_dir, 'optflow_concat1.jpg'),
Kai Chen's avatar
Kai Chen committed
33
34
35
        quantize=True,
        concat_axis=1,
        denorm=True)
Kai Chen's avatar
Kai Chen committed
36
37
38
    assert flow.shape == flow_shape

    # test exceptions
Kai Chen's avatar
Kai Chen committed
39
    notflow_file = osp.join(data_dir, 'color.jpg')
Kai Chen's avatar
Kai Chen committed
40
41
42
43
    with pytest.raises(TypeError):
        mmcv.flowread(1)
    with pytest.raises(IOError):
        mmcv.flowread(notflow_file)
Kai Chen's avatar
Kai Chen committed
44
    with pytest.raises(IOError):
Kai Chen's avatar
Kai Chen committed
45
        mmcv.flowread(notflow_file, quantize=True)
Kai Chen's avatar
Kai Chen committed
46
    with pytest.raises(ValueError):
Kai Chen's avatar
Kai Chen committed
47
        mmcv.flowread(np.zeros((100, 100, 1)))
Kai Chen's avatar
Kai Chen committed
48
49


Kai Chen's avatar
Kai Chen committed
50
def test_flowwrite():
Kai Chen's avatar
Kai Chen committed
51
    flow = np.random.rand(100, 100, 2).astype(np.float32)
Kai Chen's avatar
Kai Chen committed
52

Kai Chen's avatar
Kai Chen committed
53
54
    # write to a .flo file
    _, filename = tempfile.mkstemp()
Kai Chen's avatar
Kai Chen committed
55
56
    mmcv.flowwrite(flow, filename)
    flow_from_file = mmcv.flowread(filename)
Kai Chen's avatar
Kai Chen committed
57
58
    assert_array_equal(flow, flow_from_file)
    os.remove(filename)
Kai Chen's avatar
Kai Chen committed
59

Kai Chen's avatar
Kai Chen committed
60
    # write to two .jpg files
Kai Chen's avatar
Kai Chen committed
61
62
    tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_flow.jpg')
    for concat_axis in range(2):
Kai Chen's avatar
Kai Chen committed
63
64
        mmcv.flowwrite(
            flow, tmp_filename, quantize=True, concat_axis=concat_axis)
Kai Chen's avatar
Kai Chen committed
65
66
67
68
69
70
71
72
        shape = (200, 100) if concat_axis == 0 else (100, 200)
        assert osp.isfile(tmp_filename)
        assert mmcv.imread(tmp_filename, flag='unchanged').shape == shape
        os.remove(tmp_filename)

    # test exceptions
    with pytest.raises(AssertionError):
        mmcv.flowwrite(flow, tmp_filename, quantize=True, concat_axis=2)
Kai Chen's avatar
Kai Chen committed
73
74
75
76
77
78
79
80
81
82
83
84


def test_quantize_flow():
    flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15
    max_val = 5.0
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                val = flow[i, j, k] + max_val
                val = min(max(val, 0), 2 * max_val)
Kai Chen's avatar
Kai Chen committed
85
                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
Kai Chen's avatar
Kai Chen committed
86
87
88
89
90
91
92
93
94
95
96
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])
    max_val = 0.5
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                scale = flow.shape[1] if k == 0 else flow.shape[0]
                val = flow[i, j, k] / scale + max_val
                val = min(max(val, 0), 2 * max_val)
Kai Chen's avatar
Kai Chen committed
97
                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
Kai Chen's avatar
Kai Chen committed
98
99
100
101
102
103
104
105
106
107
108
109
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])


def test_dequantize_flow():
    dx = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    dy = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    max_val = 5.0
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False)
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
Kai Chen's avatar
Kai Chen committed
110
111
            ref[i, j, 0] = float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val
            ref[i, j, 1] = float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val
Kai Chen's avatar
Kai Chen committed
112
113
114
115
116
117
118
    assert_array_almost_equal(flow, ref)
    max_val = 0.5
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True)
    h, w = dx.shape
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
119
120
121
122
            ref[i, j,
                0] = (float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val) * w
            ref[i, j,
                1] = (float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val) * h
Kai Chen's avatar
Kai Chen committed
123
124
125
126
    assert_array_almost_equal(flow, ref)


def test_flow2rgb():
127
128
    flow = np.array([[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]],
                    dtype=np.float32)
Kai Chen's avatar
Kai Chen committed
129
130
131
132
133
134
135
136
137
138
139
140
141
    flow_img = mmcv.flow2rgb(flow)
    # yapf: disable
    assert_array_almost_equal(
        flow_img,
        np.array([[[1., 1., 1.],
                   [1., 0.826074731, 0.683772236],
                   [1., 0.652149462, 0.367544472],
                   [1., 0.265650552, 5.96046448e-08],
                   [0., 0., 0.]]],
                 dtype=np.float32))
    # yapf: enable


142
def test_flow_warp():
Kai Chen's avatar
Kai Chen committed
143

144
145
146
147
148
149
150
151
152
153
154
155
    def np_flow_warp(flow, img):
        output = np.zeros_like(img, dtype=img.dtype)
        height = flow.shape[0]
        width = flow.shape[1]

        grid = np.indices((height, width)).swapaxes(0, 1).swapaxes(1, 2)
        dx = grid[:, :, 0] + flow[:, :, 1]
        dy = grid[:, :, 1] + flow[:, :, 0]
        sx = np.floor(dx).astype(int)
        sy = np.floor(dy).astype(int)
        valid = (sx >= 0) & (sx < height - 1) & (sy >= 0) & (sy < width - 1)

156
157
        output[valid, :] = img[dx[valid].round().astype(int),
                               dy[valid].round().astype(int), :]
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

        return output

    dim = 500
    a = np.random.randn(dim, dim, 3) * 10 + 125
    b = np.random.randn(dim, dim, 2) + 2 + 0.2

    c = mmcv.flow_warp(a, b, interpolate_mode='nearest')

    d = np_flow_warp(b, a)

    simple_a = np.zeros((5, 5, 3))
    simple_a[2, 2, 0] = 1
    simple_b = np.ones((5, 5, 2))

    simple_res_c = np.zeros((5, 5, 3))
    simple_res_c[1, 1, 0] = 1

    res_c = mmcv.flow_warp(simple_a, simple_b, interpolate_mode='bilinear')

    assert_array_equal(c, d)
    assert_array_equal(res_c, simple_res_c)


Kai Chen's avatar
Kai Chen committed
182
183
184
185
186
def test_make_color_wheel():
    default_color_wheel = mmcv.make_color_wheel()
    color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2])
    # yapf: disable
    assert_array_equal(default_color_wheel, np.array(
Kai Chen's avatar
Kai Chen committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        [[1.       , 0.        , 0.        ],  # noqa
        [1.        , 0.06666667, 0.        ],  # noqa
        [1.        , 0.13333334, 0.        ],  # noqa
        [1.        , 0.2       , 0.        ],  # noqa
        [1.        , 0.26666668, 0.        ],  # noqa
        [1.        , 0.33333334, 0.        ],  # noqa
        [1.        , 0.4       , 0.        ],  # noqa
        [1.        , 0.46666667, 0.        ],  # noqa
        [1.        , 0.53333336, 0.        ],  # noqa
        [1.        , 0.6       , 0.        ],  # noqa
        [1.        , 0.6666667 , 0.        ],  # noqa
        [1.        , 0.73333335, 0.        ],  # noqa
        [1.        , 0.8       , 0.        ],  # noqa
        [1.        , 0.8666667 , 0.        ],  # noqa
        [1.        , 0.93333334, 0.        ],  # noqa
        [1.        , 1.        , 0.        ],  # noqa
        [0.8333333 , 1.        , 0.        ],  # noqa
        [0.6666667 , 1.        , 0.        ],  # noqa
        [0.5       , 1.        , 0.        ],  # noqa
        [0.33333334, 1.        , 0.        ],  # noqa
        [0.16666667, 1.        , 0.        ],  # noqa
        [0.        , 1.        , 0.        ],  # noqa
        [0.        , 1.        , 0.25      ],  # noqa
        [0.        , 1.        , 0.5       ],  # noqa
        [0.        , 1.        , 0.75      ],  # noqa
        [0.        , 1.        , 1.        ],  # noqa
        [0.        , 0.90909094, 1.        ],  # noqa
        [0.        , 0.8181818 , 1.        ],  # noqa
        [0.        , 0.72727275, 1.        ],  # noqa
        [0.        , 0.6363636 , 1.        ],  # noqa
        [0.        , 0.54545456, 1.        ],  # noqa
        [0.        , 0.45454547, 1.        ],  # noqa
        [0.        , 0.36363637, 1.        ],  # noqa
        [0.        , 0.27272728, 1.        ],  # noqa
        [0.        , 0.18181819, 1.        ],  # noqa
        [0.        , 0.09090909, 1.        ],  # noqa
        [0.        , 0.        , 1.        ],  # noqa
        [0.07692308, 0.        , 1.        ],  # noqa
        [0.15384616, 0.        , 1.        ],  # noqa
        [0.23076923, 0.        , 1.        ],  # noqa
        [0.30769232, 0.        , 1.        ],  # noqa
        [0.3846154 , 0.        , 1.        ],  # noqa
        [0.46153846, 0.        , 1.        ],  # noqa
        [0.53846157, 0.        , 1.        ],  # noqa
        [0.61538464, 0.        , 1.        ],  # noqa
        [0.6923077 , 0.        , 1.        ],  # noqa
        [0.7692308 , 0.        , 1.        ],  # noqa
        [0.84615386, 0.        , 1.        ],  # noqa
        [0.9230769 , 0.        , 1.        ],  # noqa
        [1.        , 0.        , 1.        ],  # noqa
        [1.        , 0.        , 0.8333333 ],  # noqa
        [1.        , 0.        , 0.6666667 ],  # noqa
        [1.        , 0.        , 0.5       ],  # noqa
        [1.        , 0.        , 0.33333334],  # noqa
        [1.        , 0.        , 0.16666667]], dtype=np.float32))  # noqa
Kai Chen's avatar
Kai Chen committed
242
243
244

    assert_array_equal(
        color_wheel,
Kai Chen's avatar
Kai Chen committed
245
246
247
248
249
250
251
252
253
254
255
256
        np.array([[1., 0. , 0. ],  # noqa
                 [1. , 0.5, 0. ],  # noqa
                 [1. , 1. , 0. ],  # noqa
                 [0.5, 1. , 0. ],  # noqa
                 [0. , 1. , 0. ],  # noqa
                 [0. , 1. , 0.5],  # noqa
                 [0. , 1. , 1. ],  # noqa
                 [0. , 0.5, 1. ],  # noqa
                 [0. , 0. , 1. ],  # noqa
                 [0.5, 0. , 1. ],  # noqa
                 [1. , 0. , 1. ],  # noqa
                 [1. , 0. , 0.5]], dtype=np.float32))  # noqa
Kai Chen's avatar
Kai Chen committed
257
    # yapf: enable