test_geometric.py 12.2 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright (c) Open-MMLab. All rights reserved.
import os.path as osp

import cv2
import numpy as np
import pytest
from numpy.testing import assert_array_equal

import mmcv


class TestGeometric:

    @classmethod
    def setup_class(cls):
        cls.data_dir = osp.join(osp.dirname(__file__), '../data')
        # the test img resolution is 400x300
        cls.img_path = osp.join(cls.data_dir, 'color.jpg')
        cls.img = cv2.imread(cls.img_path)

    def test_imresize(self):
        resized_img = mmcv.imresize(self.img, (1000, 600))
        assert resized_img.shape == (600, 1000, 3)
        resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600),
                                                      True)
        assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5
                and h_scale == 2.0)
        resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype)
        resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst)
        assert id(resized_img_dst) == id(resized_img)
        assert_array_equal(resized_img_dst,
                           mmcv.imresize(self.img, (1000, 600)))
        for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
            resized_img = mmcv.imresize(
                self.img, (1000, 600), interpolation=mode)
            assert resized_img.shape == (600, 1000, 3)

    def test_imresize_like(self):
        a = np.zeros((100, 200, 3))
        resized_img = mmcv.imresize_like(self.img, a)
        assert resized_img.shape == (100, 200, 3)

    def test_rescale_size(self):
        new_size, scale_factor = mmcv.rescale_size((400, 300), 1.5, True)
        assert new_size == (600, 450) and scale_factor == 1.5
        new_size, scale_factor = mmcv.rescale_size((400, 300), 0.934, True)
        assert new_size == (374, 280) and scale_factor == 0.934

        new_size = mmcv.rescale_size((400, 300), 1.5)
        assert new_size == (600, 450)
        new_size = mmcv.rescale_size((400, 300), 0.934)
        assert new_size == (374, 280)

        new_size, scale_factor = mmcv.rescale_size((400, 300), (1000, 600),
                                                   True)
        assert new_size == (800, 600) and scale_factor == 2.0
        new_size, scale_factor = mmcv.rescale_size((400, 300), (180, 200),
                                                   True)
        assert new_size == (200, 150) and scale_factor == 0.5

        new_size = mmcv.rescale_size((400, 300), (1000, 600))
        assert new_size == (800, 600)
        new_size = mmcv.rescale_size((400, 300), (180, 200))
        assert new_size == (200, 150)

        with pytest.raises(ValueError):
            mmcv.rescale_size((400, 300), -0.5)
        with pytest.raises(TypeError):
            mmcv.rescale_size()((400, 300), [100, 100])

    def test_imrescale(self):
        # rescale by a certain factor
        resized_img = mmcv.imrescale(self.img, 1.5)
        assert resized_img.shape == (450, 600, 3)
        resized_img = mmcv.imrescale(self.img, 0.934)
        assert resized_img.shape == (280, 374, 3)

        # rescale by a certain max_size
        # resize (400, 300) to (max_1000, max_600)
        resized_img = mmcv.imrescale(self.img, (1000, 600))
        assert resized_img.shape == (600, 800, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (1000, 600), return_scale=True)
        assert resized_img.shape == (600, 800, 3) and scale == 2.0
        # resize (400, 300) to (max_200, max_180)
        resized_img = mmcv.imrescale(self.img, (180, 200))
        assert resized_img.shape == (150, 200, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (180, 200), return_scale=True)
        assert resized_img.shape == (150, 200, 3) and scale == 0.5

        # test exceptions
        with pytest.raises(ValueError):
            mmcv.imrescale(self.img, -0.5)
        with pytest.raises(TypeError):
            mmcv.imrescale(self.img, [100, 100])

    def test_imflip(self):
        # test horizontal flip (color image)
        img = np.random.rand(80, 60, 3)
        h, w, c = img.shape
        flipped_img = mmcv.imflip(img)
        assert flipped_img.shape == img.shape
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
        # test vertical flip (color image)
        flipped_img = mmcv.imflip(img, direction='vertical')
        assert flipped_img.shape == img.shape
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
        # test horizontal flip (grayscale image)
        img = np.random.rand(80, 60)
        h, w = img.shape
        flipped_img = mmcv.imflip(img)
        assert flipped_img.shape == img.shape
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[i, w - 1 - j]
        # test vertical flip (grayscale image)
        flipped_img = mmcv.imflip(img, direction='vertical')
        assert flipped_img.shape == img.shape
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[h - 1 - i, j]

    def test_imflip_(self):
        # test horizontal flip (color image)
        img = np.random.rand(80, 60, 3)
        h, w, c = img.shape
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip)
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]

        # test vertical flip (color image)
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]

        # test horizontal flip (grayscale image)
        img = np.random.rand(80, 60)
        h, w = img.shape
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip)
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[i, w - 1 - j]
                assert flipped_img[i, j] == img_for_flip[i, j]

        # test vertical flip (grayscale image)
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[h - 1 - i, j]
                assert flipped_img[i, j] == img_for_flip[i, j]

    def test_imcrop(self):
        # yapf: disable
        bboxes = np.array([[100, 100, 199, 199],  # center
                           [0, 0, 150, 100],  # left-top corner
                           [250, 200, 399, 299],  # right-bottom corner
                           [0, 100, 399, 199],  # wide
                           [150, 0, 299, 299]])  # tall
        # yapf: enable

        # crop one bbox
        patch = mmcv.imcrop(self.img, bboxes[0, :])
        patches = mmcv.imcrop(self.img, bboxes[[0], :])
        assert patch.shape == (100, 100, 3)
        patch_path = osp.join(self.data_dir, 'patches')
        ref_patch = np.load(patch_path + '/0.npy')
        assert_array_equal(patch, ref_patch)
        assert isinstance(patches, list) and len(patches) == 1
        assert_array_equal(patches[0], ref_patch)

        # crop with no scaling and padding
        patches = mmcv.imcrop(self.img, bboxes)
        assert len(patches) == bboxes.shape[0]
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/{}.npy'.format(i))
            assert_array_equal(patches[i], ref_patch)

        # crop with scaling and no padding
        patches = mmcv.imcrop(self.img, bboxes, 1.2)
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/scale_{}.npy'.format(i))
            assert_array_equal(patches[i], ref_patch)

        # crop with scaling and padding
        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0])
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/pad_{}.npy'.format(i))
            assert_array_equal(patches[i], ref_patch)
        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0)
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/pad0_{}.npy'.format(i))
            assert_array_equal(patches[i], ref_patch)

    def test_impad(self):
        # grayscale image
        img = np.random.rand(10, 10).astype(np.float32)
        padded_img = mmcv.impad(img, (15, 12), 0)
        assert_array_equal(img, padded_img[:10, :10])
        assert_array_equal(
            np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
        assert_array_equal(
            np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])

        # RGB image
        img = np.random.rand(10, 10, 3).astype(np.float32)
        padded_img = mmcv.impad(img, (15, 12), 0)
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
        assert_array_equal(
            np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])

        img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
        padded_img = mmcv.impad(img, (15, 12, 3), [100, 110, 120])
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])

        with pytest.raises(AssertionError):
            mmcv.impad(img, (15, ), 0)
        with pytest.raises(AssertionError):
            mmcv.impad(img, (5, 5), 0)
        with pytest.raises(AssertionError):
            mmcv.impad(img, (5, 5), [0, 1])

    def test_impad_to_multiple(self):
        img = np.random.rand(11, 14, 3).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 4)
        assert padded_img.shape == (12, 16, 3)
        img = np.random.rand(20, 12).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 5)
        assert padded_img.shape == (20, 15)
        img = np.random.rand(20, 12).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 2)
        assert padded_img.shape == (20, 12)

    def test_imrotate(self):
        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
        assert_array_equal(mmcv.imrotate(img, 0), img)
        img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]])
        assert_array_equal(mmcv.imrotate(img, 90), img_r)
        img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]])
        assert_array_equal(mmcv.imrotate(img, -90), img_r)

        img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8)
        img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]])
        assert_array_equal(mmcv.imrotate(img, 90), img_r)
        img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]])
        assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r)
        img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]])
        assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r)
        img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]])
        assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r)

        with pytest.raises(ValueError):
            mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True)