test_optflow.py 9.39 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
Kai Chen's avatar
Kai Chen committed
2
3
4
5
6
7
import os
import os.path as osp
import tempfile

import numpy as np
import pytest
Kai Chen's avatar
Kai Chen committed
8
9
10
from numpy.testing import assert_array_almost_equal, assert_array_equal

import mmcv
Kai Chen's avatar
Kai Chen committed
11
12


Kai Chen's avatar
Kai Chen committed
13
def test_flowread():
Kai Chen's avatar
Kai Chen committed
14
    data_dir = osp.join(osp.dirname(__file__), '../data')
Kai Chen's avatar
Kai Chen committed
15
16
17
    flow_shape = (60, 80, 2)

    # read .flo file
Kai Chen's avatar
Kai Chen committed
18
    flow = mmcv.flowread(osp.join(data_dir, 'optflow.flo'))
Kai Chen's avatar
Kai Chen committed
19
20
21
22
    assert flow.shape == flow_shape

    # pseudo read
    flow_same = mmcv.flowread(flow)
Kai Chen's avatar
Kai Chen committed
23
    assert_array_equal(flow, flow_same)
Kai Chen's avatar
Kai Chen committed
24
25

    # read quantized flow concatenated vertically
Kai Chen's avatar
Kai Chen committed
26
    flow = mmcv.flowread(
Kai Chen's avatar
Kai Chen committed
27
        osp.join(data_dir, 'optflow_concat0.jpg'), quantize=True, denorm=True)
Kai Chen's avatar
Kai Chen committed
28
29
30
    assert flow.shape == flow_shape

    # read quantized flow concatenated horizontally
Kai Chen's avatar
Kai Chen committed
31
    flow = mmcv.flowread(
Kai Chen's avatar
Kai Chen committed
32
        osp.join(data_dir, 'optflow_concat1.jpg'),
Kai Chen's avatar
Kai Chen committed
33
34
35
        quantize=True,
        concat_axis=1,
        denorm=True)
Kai Chen's avatar
Kai Chen committed
36
37
38
    assert flow.shape == flow_shape

    # test exceptions
Kai Chen's avatar
Kai Chen committed
39
    notflow_file = osp.join(data_dir, 'color.jpg')
Kai Chen's avatar
Kai Chen committed
40
41
42
43
    with pytest.raises(TypeError):
        mmcv.flowread(1)
    with pytest.raises(IOError):
        mmcv.flowread(notflow_file)
Kai Chen's avatar
Kai Chen committed
44
    with pytest.raises(IOError):
Kai Chen's avatar
Kai Chen committed
45
        mmcv.flowread(notflow_file, quantize=True)
Kai Chen's avatar
Kai Chen committed
46
    with pytest.raises(ValueError):
Kai Chen's avatar
Kai Chen committed
47
        mmcv.flowread(np.zeros((100, 100, 1)))
Kai Chen's avatar
Kai Chen committed
48
49


Kai Chen's avatar
Kai Chen committed
50
def test_flowwrite():
Kai Chen's avatar
Kai Chen committed
51
    flow = np.random.rand(100, 100, 2).astype(np.float32)
Kai Chen's avatar
Kai Chen committed
52

Kai Chen's avatar
Kai Chen committed
53
    # write to a .flo file
54
    tmp_filehandler, filename = tempfile.mkstemp()
Kai Chen's avatar
Kai Chen committed
55
56
    mmcv.flowwrite(flow, filename)
    flow_from_file = mmcv.flowread(filename)
Kai Chen's avatar
Kai Chen committed
57
    assert_array_equal(flow, flow_from_file)
58
    os.close(tmp_filehandler)
Kai Chen's avatar
Kai Chen committed
59
    os.remove(filename)
Kai Chen's avatar
Kai Chen committed
60

Kai Chen's avatar
Kai Chen committed
61
    # write to two .jpg files
Kai Chen's avatar
Kai Chen committed
62
63
    tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_flow.jpg')
    for concat_axis in range(2):
Kai Chen's avatar
Kai Chen committed
64
65
        mmcv.flowwrite(
            flow, tmp_filename, quantize=True, concat_axis=concat_axis)
Kai Chen's avatar
Kai Chen committed
66
67
68
69
70
71
72
73
        shape = (200, 100) if concat_axis == 0 else (100, 200)
        assert osp.isfile(tmp_filename)
        assert mmcv.imread(tmp_filename, flag='unchanged').shape == shape
        os.remove(tmp_filename)

    # test exceptions
    with pytest.raises(AssertionError):
        mmcv.flowwrite(flow, tmp_filename, quantize=True, concat_axis=2)
Kai Chen's avatar
Kai Chen committed
74
75
76
77
78
79
80
81
82
83
84
85


def test_quantize_flow():
    flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15
    max_val = 5.0
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                val = flow[i, j, k] + max_val
                val = min(max(val, 0), 2 * max_val)
Kai Chen's avatar
Kai Chen committed
86
                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
Kai Chen's avatar
Kai Chen committed
87
88
89
90
91
92
93
94
95
96
97
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])
    max_val = 0.5
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                scale = flow.shape[1] if k == 0 else flow.shape[0]
                val = flow[i, j, k] / scale + max_val
                val = min(max(val, 0), 2 * max_val)
Kai Chen's avatar
Kai Chen committed
98
                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
Kai Chen's avatar
Kai Chen committed
99
100
101
102
103
104
105
106
107
108
109
110
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])


def test_dequantize_flow():
    dx = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    dy = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    max_val = 5.0
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False)
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
Kai Chen's avatar
Kai Chen committed
111
112
            ref[i, j, 0] = float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val
            ref[i, j, 1] = float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val
Kai Chen's avatar
Kai Chen committed
113
114
115
116
117
118
119
    assert_array_almost_equal(flow, ref)
    max_val = 0.5
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True)
    h, w = dx.shape
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
120
121
122
123
            ref[i, j,
                0] = (float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val) * w
            ref[i, j,
                1] = (float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val) * h
Kai Chen's avatar
Kai Chen committed
124
125
126
127
    assert_array_almost_equal(flow, ref)


def test_flow2rgb():
128
129
    flow = np.array([[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]],
                    dtype=np.float32)
Kai Chen's avatar
Kai Chen committed
130
131
132
133
134
135
136
137
138
139
140
141
142
    flow_img = mmcv.flow2rgb(flow)
    # yapf: disable
    assert_array_almost_equal(
        flow_img,
        np.array([[[1., 1., 1.],
                   [1., 0.826074731, 0.683772236],
                   [1., 0.652149462, 0.367544472],
                   [1., 0.265650552, 5.96046448e-08],
                   [0., 0., 0.]]],
                 dtype=np.float32))
    # yapf: enable


143
def test_flow_warp():
Kai Chen's avatar
Kai Chen committed
144

145
146
147
    img = np.zeros((5, 5, 3))
    img[2, 2, 0] = 1
    flow = np.ones((5, 5, 2))
148

149
150
    res_nn = mmcv.flow_warp(img, flow, interpolate_mode='nearest')
    res_bi = mmcv.flow_warp(img, flow, interpolate_mode='bilinear')
151

152
    assert_array_almost_equal(res_nn, res_bi, decimal=5)
153

154
155
156
157
158
    img = np.zeros((5, 5, 1))
    img[2, 2, 0] = 1
    img[2, 3, 0] = 0.75
    flow = np.zeros((5, 5, 2))
    flow[2, 2, :] = [0.5, 0.7]
159

160
161
162
163
    res_ = np.copy(img)
    res_[2, 2] = 0.5 * 0.3 + 0.75 * 0.5 * 0.3
    res_bi = mmcv.flow_warp(img, flow, interpolate_mode='bilinear')
    assert_array_almost_equal(res_, res_bi, decimal=5)
164

165
166
    with pytest.raises(NotImplementedError):
        _ = mmcv.flow_warp(img, flow, interpolate_mode='xxx')
167

168
169
    with pytest.raises(AssertionError):
        _ = mmcv.flow_warp(img, flow[:, :, 0], interpolate_mode='xxx')
170
171


Kai Chen's avatar
Kai Chen committed
172
173
174
175
176
def test_make_color_wheel():
    default_color_wheel = mmcv.make_color_wheel()
    color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2])
    # yapf: disable
    assert_array_equal(default_color_wheel, np.array(
Kai Chen's avatar
Kai Chen committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        [[1.       , 0.        , 0.        ],  # noqa
        [1.        , 0.06666667, 0.        ],  # noqa
        [1.        , 0.13333334, 0.        ],  # noqa
        [1.        , 0.2       , 0.        ],  # noqa
        [1.        , 0.26666668, 0.        ],  # noqa
        [1.        , 0.33333334, 0.        ],  # noqa
        [1.        , 0.4       , 0.        ],  # noqa
        [1.        , 0.46666667, 0.        ],  # noqa
        [1.        , 0.53333336, 0.        ],  # noqa
        [1.        , 0.6       , 0.        ],  # noqa
        [1.        , 0.6666667 , 0.        ],  # noqa
        [1.        , 0.73333335, 0.        ],  # noqa
        [1.        , 0.8       , 0.        ],  # noqa
        [1.        , 0.8666667 , 0.        ],  # noqa
        [1.        , 0.93333334, 0.        ],  # noqa
        [1.        , 1.        , 0.        ],  # noqa
        [0.8333333 , 1.        , 0.        ],  # noqa
        [0.6666667 , 1.        , 0.        ],  # noqa
        [0.5       , 1.        , 0.        ],  # noqa
        [0.33333334, 1.        , 0.        ],  # noqa
        [0.16666667, 1.        , 0.        ],  # noqa
        [0.        , 1.        , 0.        ],  # noqa
        [0.        , 1.        , 0.25      ],  # noqa
        [0.        , 1.        , 0.5       ],  # noqa
        [0.        , 1.        , 0.75      ],  # noqa
        [0.        , 1.        , 1.        ],  # noqa
        [0.        , 0.90909094, 1.        ],  # noqa
        [0.        , 0.8181818 , 1.        ],  # noqa
        [0.        , 0.72727275, 1.        ],  # noqa
        [0.        , 0.6363636 , 1.        ],  # noqa
        [0.        , 0.54545456, 1.        ],  # noqa
        [0.        , 0.45454547, 1.        ],  # noqa
        [0.        , 0.36363637, 1.        ],  # noqa
        [0.        , 0.27272728, 1.        ],  # noqa
        [0.        , 0.18181819, 1.        ],  # noqa
        [0.        , 0.09090909, 1.        ],  # noqa
        [0.        , 0.        , 1.        ],  # noqa
        [0.07692308, 0.        , 1.        ],  # noqa
        [0.15384616, 0.        , 1.        ],  # noqa
        [0.23076923, 0.        , 1.        ],  # noqa
        [0.30769232, 0.        , 1.        ],  # noqa
        [0.3846154 , 0.        , 1.        ],  # noqa
        [0.46153846, 0.        , 1.        ],  # noqa
        [0.53846157, 0.        , 1.        ],  # noqa
        [0.61538464, 0.        , 1.        ],  # noqa
        [0.6923077 , 0.        , 1.        ],  # noqa
        [0.7692308 , 0.        , 1.        ],  # noqa
        [0.84615386, 0.        , 1.        ],  # noqa
        [0.9230769 , 0.        , 1.        ],  # noqa
        [1.        , 0.        , 1.        ],  # noqa
        [1.        , 0.        , 0.8333333 ],  # noqa
        [1.        , 0.        , 0.6666667 ],  # noqa
        [1.        , 0.        , 0.5       ],  # noqa
        [1.        , 0.        , 0.33333334],  # noqa
        [1.        , 0.        , 0.16666667]], dtype=np.float32))  # noqa
Kai Chen's avatar
Kai Chen committed
232
233
234

    assert_array_equal(
        color_wheel,
Kai Chen's avatar
Kai Chen committed
235
236
237
238
239
240
241
242
243
244
245
246
        np.array([[1., 0. , 0. ],  # noqa
                 [1. , 0.5, 0. ],  # noqa
                 [1. , 1. , 0. ],  # noqa
                 [0.5, 1. , 0. ],  # noqa
                 [0. , 1. , 0. ],  # noqa
                 [0. , 1. , 0.5],  # noqa
                 [0. , 1. , 1. ],  # noqa
                 [0. , 0.5, 1. ],  # noqa
                 [0. , 0. , 1. ],  # noqa
                 [0.5, 0. , 1. ],  # noqa
                 [1. , 0. , 1. ],  # noqa
                 [1. , 0. , 0.5]], dtype=np.float32))  # noqa
Kai Chen's avatar
Kai Chen committed
247
    # yapf: enable