test_optflow.py 7.96 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
import os
import os.path as osp
import tempfile

import mmcv
import numpy as np
import pytest
from numpy.testing import assert_array_equal, assert_array_almost_equal


Kai Chen's avatar
Kai Chen committed
11
12
13
14
15
16
17
18
19
def test_flowread():
    flow_shape = (60, 80, 2)

    # read .flo file
    flow = mmcv.flowread(osp.join(osp.dirname(__file__), 'data/optflow.flo'))
    assert flow.shape == flow_shape

    # pseudo read
    flow_same = mmcv.flowread(flow)
Kai Chen's avatar
Kai Chen committed
20
    assert_array_equal(flow, flow_same)
Kai Chen's avatar
Kai Chen committed
21
22
23
24

    # read quantized flow concatenated vertically
    flow = mmcv.flowread(
        osp.join(osp.dirname(__file__), 'data/optflow_concat0.jpg'),
Kai Chen's avatar
Kai Chen committed
25
26
        quantize=True,
        denorm=True)
Kai Chen's avatar
Kai Chen committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    assert flow.shape == flow_shape

    # read quantized flow concatenated horizontally
    flow = mmcv.flowread(
        osp.join(osp.dirname(__file__), 'data/optflow_concat1.jpg'),
        quantize=True,
        concat_axis=1,
        denorm=True)
    assert flow.shape == flow_shape

    # test exceptions
    notflow_file = osp.join(osp.dirname(__file__), 'data/color.jpg')
    with pytest.raises(TypeError):
        mmcv.flowread(1)
    with pytest.raises(IOError):
        mmcv.flowread(notflow_file)
Kai Chen's avatar
Kai Chen committed
43
    with pytest.raises(IOError):
Kai Chen's avatar
Kai Chen committed
44
        mmcv.flowread(notflow_file, quantize=True)
Kai Chen's avatar
Kai Chen committed
45
    with pytest.raises(ValueError):
Kai Chen's avatar
Kai Chen committed
46
        mmcv.flowread(np.zeros((100, 100, 1)))
Kai Chen's avatar
Kai Chen committed
47
48


Kai Chen's avatar
Kai Chen committed
49
def test_flowwrite():
Kai Chen's avatar
Kai Chen committed
50
    flow = np.random.rand(100, 100, 2).astype(np.float32)
Kai Chen's avatar
Kai Chen committed
51

Kai Chen's avatar
Kai Chen committed
52
53
    # write to a .flo file
    _, filename = tempfile.mkstemp()
Kai Chen's avatar
Kai Chen committed
54
55
    mmcv.flowwrite(flow, filename)
    flow_from_file = mmcv.flowread(filename)
Kai Chen's avatar
Kai Chen committed
56
57
    assert_array_equal(flow, flow_from_file)
    os.remove(filename)
Kai Chen's avatar
Kai Chen committed
58

Kai Chen's avatar
Kai Chen committed
59
    # write to two .jpg files
Kai Chen's avatar
Kai Chen committed
60
61
62
63
64
65
66
67
68
69
70
71
    tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_flow.jpg')
    for concat_axis in range(2):
        mmcv.flowwrite(
            flow, tmp_filename, quantize=True, concat_axis=concat_axis)
        shape = (200, 100) if concat_axis == 0 else (100, 200)
        assert osp.isfile(tmp_filename)
        assert mmcv.imread(tmp_filename, flag='unchanged').shape == shape
        os.remove(tmp_filename)

    # test exceptions
    with pytest.raises(AssertionError):
        mmcv.flowwrite(flow, tmp_filename, quantize=True, concat_axis=2)
Kai Chen's avatar
Kai Chen committed
72
73
74
75
76
77
78
79
80
81
82
83


def test_quantize_flow():
    flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15
    max_val = 5.0
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                val = flow[i, j, k] + max_val
                val = min(max(val, 0), 2 * max_val)
Kai Chen's avatar
Kai Chen committed
84
                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
Kai Chen's avatar
Kai Chen committed
85
86
87
88
89
90
91
92
93
94
95
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])
    max_val = 0.5
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                scale = flow.shape[1] if k == 0 else flow.shape[0]
                val = flow[i, j, k] / scale + max_val
                val = min(max(val, 0), 2 * max_val)
Kai Chen's avatar
Kai Chen committed
96
                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
Kai Chen's avatar
Kai Chen committed
97
98
99
100
101
102
103
104
105
106
107
108
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])


def test_dequantize_flow():
    dx = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    dy = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    max_val = 5.0
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False)
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
Kai Chen's avatar
Kai Chen committed
109
110
            ref[i, j, 0] = float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val
            ref[i, j, 1] = float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val
Kai Chen's avatar
Kai Chen committed
111
112
113
114
115
116
117
    assert_array_almost_equal(flow, ref)
    max_val = 0.5
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True)
    h, w = dx.shape
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
Kai Chen's avatar
Kai Chen committed
118
119
120
121
            ref[i, j,
                0] = (float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val) * w
            ref[i, j,
                1] = (float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val) * h
Kai Chen's avatar
Kai Chen committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    assert_array_almost_equal(flow, ref)


def test_flow2rgb():
    flow = np.array(
        [[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]], dtype=np.float32)
    flow_img = mmcv.flow2rgb(flow)
    # yapf: disable
    assert_array_almost_equal(
        flow_img,
        np.array([[[1., 1., 1.],
                   [1., 0.826074731, 0.683772236],
                   [1., 0.652149462, 0.367544472],
                   [1., 0.265650552, 5.96046448e-08],
                   [0., 0., 0.]]],
                 dtype=np.float32))
    # yapf: enable


def test_make_color_wheel():
    default_color_wheel = mmcv.make_color_wheel()
    color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2])
    # yapf: disable
    assert_array_equal(default_color_wheel, np.array(
        [[1.       , 0.        , 0.        ],
        [1.        , 0.06666667, 0.        ],
        [1.        , 0.13333334, 0.        ],
        [1.        , 0.2       , 0.        ],
        [1.        , 0.26666668, 0.        ],
        [1.        , 0.33333334, 0.        ],
        [1.        , 0.4       , 0.        ],
        [1.        , 0.46666667, 0.        ],
        [1.        , 0.53333336, 0.        ],
        [1.        , 0.6       , 0.        ],
        [1.        , 0.6666667 , 0.        ],
        [1.        , 0.73333335, 0.        ],
        [1.        , 0.8       , 0.        ],
        [1.        , 0.8666667 , 0.        ],
        [1.        , 0.93333334, 0.        ],
        [1.        , 1.        , 0.        ],
        [0.8333333 , 1.        , 0.        ],
        [0.6666667 , 1.        , 0.        ],
        [0.5       , 1.        , 0.        ],
        [0.33333334, 1.        , 0.        ],
        [0.16666667, 1.        , 0.        ],
        [0.        , 1.        , 0.        ],
        [0.        , 1.        , 0.25      ],
        [0.        , 1.        , 0.5       ],
        [0.        , 1.        , 0.75      ],
        [0.        , 1.        , 1.        ],
        [0.        , 0.90909094, 1.        ],
        [0.        , 0.8181818 , 1.        ],
        [0.        , 0.72727275, 1.        ],
        [0.        , 0.6363636 , 1.        ],
        [0.        , 0.54545456, 1.        ],
        [0.        , 0.45454547, 1.        ],
        [0.        , 0.36363637, 1.        ],
        [0.        , 0.27272728, 1.        ],
        [0.        , 0.18181819, 1.        ],
        [0.        , 0.09090909, 1.        ],
        [0.        , 0.        , 1.        ],
        [0.07692308, 0.        , 1.        ],
        [0.15384616, 0.        , 1.        ],
        [0.23076923, 0.        , 1.        ],
        [0.30769232, 0.        , 1.        ],
        [0.3846154 , 0.        , 1.        ],
        [0.46153846, 0.        , 1.        ],
        [0.53846157, 0.        , 1.        ],
        [0.61538464, 0.        , 1.        ],
        [0.6923077 , 0.        , 1.        ],
        [0.7692308 , 0.        , 1.        ],
        [0.84615386, 0.        , 1.        ],
        [0.9230769 , 0.        , 1.        ],
        [1.        , 0.        , 1.        ],
        [1.        , 0.        , 0.8333333 ],
        [1.        , 0.        , 0.6666667 ],
        [1.        , 0.        , 0.5       ],
        [1.        , 0.        , 0.33333334],
        [1.        , 0.        , 0.16666667]], dtype=np.float32))

    assert_array_equal(
        color_wheel,
        np.array([[1., 0. , 0. ],
                 [1. , 0.5, 0. ],
                 [1. , 1. , 0. ],
                 [0.5, 1. , 0. ],
                 [0. , 1. , 0. ],
                 [0. , 1. , 0.5],
                 [0. , 1. , 1. ],
                 [0. , 0.5, 1. ],
                 [0. , 0. , 1. ],
                 [0.5, 0. , 1. ],
                 [1. , 0. , 1. ],
                 [1. , 0. , 0.5]], dtype=np.float32))
    # yapf: enable