test_optflow.py 7.22 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import os.path as osp
import tempfile

import mmcv
import numpy as np
import pytest
from numpy.testing import assert_array_equal, assert_array_almost_equal


def test_read_flow():
    flow = mmcv.read_flow(osp.join(osp.dirname(__file__), 'data/optflow.flo'))
    assert flow.ndim == 3 and flow.shape[-1] == 2
    flow_same = mmcv.read_flow(flow)
    assert_array_equal(flow, flow_same)
    flow = mmcv.read_flow(
        osp.join(osp.dirname(__file__), 'data/optflow.jpg'),
        quantize=True,
        denorm=True)
    assert flow.ndim == 3 and flow.shape[-1] == 2
    with pytest.raises(IOError):
        mmcv.read_flow(osp.join(osp.dirname(__file__), 'data/color.jpg'))
    with pytest.raises(ValueError):
        mmcv.read_flow(np.zeros((100, 100, 1)))
    with pytest.raises(TypeError):
        mmcv.read_flow(1)


def test_write_flow():
    flow = np.random.rand(100, 100, 2).astype(np.float32)
    # write to a .flo file
    _, filename = tempfile.mkstemp()
    mmcv.write_flow(flow, filename)
    flow_from_file = mmcv.read_flow(filename)
    assert_array_equal(flow, flow_from_file)
    os.remove(filename)
    # write to two .jpg files
    tmp_dir = tempfile.gettempdir()
    mmcv.write_flow(flow, osp.join(tmp_dir, 'test_flow.jpg'), quantize=True)
    assert osp.isfile(osp.join(tmp_dir, 'test_flow_dx.jpg'))
    assert osp.isfile(osp.join(tmp_dir, 'test_flow_dy.jpg'))
    os.remove(osp.join(tmp_dir, 'test_flow_dx.jpg'))
    os.remove(osp.join(tmp_dir, 'test_flow_dy.jpg'))


def test_quantize_flow():
    flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15
    max_val = 5.0
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                val = flow[i, j, k] + max_val
                val = min(max(val, 0), 2 * max_val)
                ref[i, j, k] = np.round(255 * val / (2 * max_val))
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])
    max_val = 0.5
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                scale = flow.shape[1] if k == 0 else flow.shape[0]
                val = flow[i, j, k] / scale + max_val
                val = min(max(val, 0), 2 * max_val)
                ref[i, j, k] = np.round(255 * val / (2 * max_val))
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])


def test_dequantize_flow():
    dx = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    dy = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    max_val = 5.0
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False)
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            ref[i, j, 0] = float(dx[i, j]) * 2 * max_val / 255 - max_val
            ref[i, j, 1] = float(dy[i, j]) * 2 * max_val / 255 - max_val
    assert_array_almost_equal(flow, ref)
    max_val = 0.5
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True)
    h, w = dx.shape
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            ref[i, j, 0] = (float(dx[i, j]) * 2 * max_val / 255 - max_val) * w
            ref[i, j, 1] = (float(dy[i, j]) * 2 * max_val / 255 - max_val) * h
    assert_array_almost_equal(flow, ref)


def test_flow2rgb():
    flow = np.array(
        [[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]], dtype=np.float32)
    flow_img = mmcv.flow2rgb(flow)
    # yapf: disable
    assert_array_almost_equal(
        flow_img,
        np.array([[[1., 1., 1.],
                   [1., 0.826074731, 0.683772236],
                   [1., 0.652149462, 0.367544472],
                   [1., 0.265650552, 5.96046448e-08],
                   [0., 0., 0.]]],
                 dtype=np.float32))
    # yapf: enable


def test_make_color_wheel():
    default_color_wheel = mmcv.make_color_wheel()
    color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2])
    # yapf: disable
    assert_array_equal(default_color_wheel, np.array(
        [[1.       , 0.        , 0.        ],
        [1.        , 0.06666667, 0.        ],
        [1.        , 0.13333334, 0.        ],
        [1.        , 0.2       , 0.        ],
        [1.        , 0.26666668, 0.        ],
        [1.        , 0.33333334, 0.        ],
        [1.        , 0.4       , 0.        ],
        [1.        , 0.46666667, 0.        ],
        [1.        , 0.53333336, 0.        ],
        [1.        , 0.6       , 0.        ],
        [1.        , 0.6666667 , 0.        ],
        [1.        , 0.73333335, 0.        ],
        [1.        , 0.8       , 0.        ],
        [1.        , 0.8666667 , 0.        ],
        [1.        , 0.93333334, 0.        ],
        [1.        , 1.        , 0.        ],
        [0.8333333 , 1.        , 0.        ],
        [0.6666667 , 1.        , 0.        ],
        [0.5       , 1.        , 0.        ],
        [0.33333334, 1.        , 0.        ],
        [0.16666667, 1.        , 0.        ],
        [0.        , 1.        , 0.        ],
        [0.        , 1.        , 0.25      ],
        [0.        , 1.        , 0.5       ],
        [0.        , 1.        , 0.75      ],
        [0.        , 1.        , 1.        ],
        [0.        , 0.90909094, 1.        ],
        [0.        , 0.8181818 , 1.        ],
        [0.        , 0.72727275, 1.        ],
        [0.        , 0.6363636 , 1.        ],
        [0.        , 0.54545456, 1.        ],
        [0.        , 0.45454547, 1.        ],
        [0.        , 0.36363637, 1.        ],
        [0.        , 0.27272728, 1.        ],
        [0.        , 0.18181819, 1.        ],
        [0.        , 0.09090909, 1.        ],
        [0.        , 0.        , 1.        ],
        [0.07692308, 0.        , 1.        ],
        [0.15384616, 0.        , 1.        ],
        [0.23076923, 0.        , 1.        ],
        [0.30769232, 0.        , 1.        ],
        [0.3846154 , 0.        , 1.        ],
        [0.46153846, 0.        , 1.        ],
        [0.53846157, 0.        , 1.        ],
        [0.61538464, 0.        , 1.        ],
        [0.6923077 , 0.        , 1.        ],
        [0.7692308 , 0.        , 1.        ],
        [0.84615386, 0.        , 1.        ],
        [0.9230769 , 0.        , 1.        ],
        [1.        , 0.        , 1.        ],
        [1.        , 0.        , 0.8333333 ],
        [1.        , 0.        , 0.6666667 ],
        [1.        , 0.        , 0.5       ],
        [1.        , 0.        , 0.33333334],
        [1.        , 0.        , 0.16666667]], dtype=np.float32))

    assert_array_equal(
        color_wheel,
        np.array([[1., 0. , 0. ],
                 [1. , 0.5, 0. ],
                 [1. , 1. , 0. ],
                 [0.5, 1. , 0. ],
                 [0. , 1. , 0. ],
                 [0. , 1. , 0.5],
                 [0. , 1. , 1. ],
                 [0. , 0.5, 1. ],
                 [0. , 0. , 1. ],
                 [0.5, 0. , 1. ],
                 [1. , 0. , 1. ],
                 [1. , 0. , 0.5]], dtype=np.float32))
    # yapf: enable