"magic_pdf/vscode:/vscode.git/clone" did not exist on "d5ea44f944d73349c6a012fad426cfff0c2a2584"
test_modulated_deform_conv.py 5.24 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
import os

import numpy
5
import pytest
6
7
import torch

8
from mmcv.utils import IS_MLU_AVAILABLE, TORCH_VERSION, digit_version
9
10
11
12
13
14
15
16

try:
    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    # would be imported and used; we should test if our modules support it.
    from torch.cuda.amp import autocast
except ImportError:
    pass

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
cur_dir = os.path.dirname(os.path.abspath(__file__))

input_t = [[[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]]]
output_t = [[[[0.5, 1.5, 2.5, 1.5], [1.0, 3.0, 5.0, 3.0], [1.0, 3.0, 5.0, 3.0],
              [0.5, 1.5, 2.5, 1.5]]]]
input_grad = [[[[2., 2., 2.], [2., 2., 2.], [2., 2., 2.]]]]
dcn_w_grad = [[[[9., 9.], [9., 9.]]]]
dcn_offset_w_grad = [[[[-7.0, -4.0], [0.0, 0.0]]], [[[-9.0, 7.5], [-6.0,
                                                                   5.0]]],
                     [[[-4.0, -7.0], [0.0, 0.0]]],
                     [[[-7.5, -9.0], [-5.0, -6.0]]],
                     [[[-7.0, -4.0], [-7.0, -4.0]]],
                     [[[-6.0, 5.0], [-9.0, 7.5]]],
                     [[[-4.0, -7.0], [-4.0, -7.0]]],
                     [[[-5.0, -6.0], [-7.5, -9.0]]], [[[10.5, 6.0], [7.0,
                                                                     4.0]]],
                     [[[6.0, 10.5], [4.0, 7.0]]], [[[7.0, 4.0], [10.5, 6.0]]],
                     [[[4.0, 7.0], [6.0, 10.5]]]]
dcn_offset_b_grad = [
    -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, 4.5, 4.5, 4.5, 4.5
]


40
class TestMdconv:
41

42
43
44
    def _test_mdconv(self, dtype=torch.float, device='cuda'):
        if not torch.cuda.is_available() and device == 'cuda':
            pytest.skip('test requires GPU')
45
46
47
48
49
50
        if device == 'mlu':
            from mmcv.ops import \
                ModulatedDeformConv2dPack_MLU as ModulatedDeformConv2dPack
        else:
            from mmcv.ops import ModulatedDeformConv2dPack

51
        input = torch.tensor(input_t, dtype=dtype, device=device)
52
53
54
55
56
57
58
59
        input.requires_grad = True
        dcn = ModulatedDeformConv2dPack(
            1,
            1,
            kernel_size=(2, 2),
            stride=1,
            padding=1,
            deform_groups=1,
60
            bias=False).to(device)
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        dcn.weight.data.fill_(1.)
        dcn.type(dtype)
        output = dcn(input)
        output.sum().backward()
        assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
        assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
                              1e-2)
        assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
                              dcn_w_grad, 1e-2)
        assert numpy.allclose(
            dcn.conv_offset.weight.grad.cpu().detach().numpy(),
            dcn_offset_w_grad, 1e-2)
        assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
                              dcn_offset_b_grad, 1e-2)

77
    def _test_amp_mdconv(self, input_dtype=torch.float, device='cuda'):
78
79
80
81
82
83
84
85
86
        """The function to test amp released on pytorch 1.6.0.

        The type of input data might be torch.float or torch.half,
        so we should test mdconv in both cases. With amp, the data
        type of model will NOT be set manually.

        Args:
            input_dtype: torch.float or torch.half.
        """
87
        if not torch.cuda.is_available() and device == 'cuda':
88
            return
89
90
91
92
93
94
95
        if device == 'mlu':
            from mmcv.ops import \
                ModulatedDeformConv2dPack_MLU as ModulatedDeformConv2dPack
        else:
            from mmcv.ops import ModulatedDeformConv2dPack

        input = torch.tensor(input_t).to(device).type(input_dtype)
96
97
98
99
100
101
102
103
104
        input.requires_grad = True

        dcn = ModulatedDeformConv2dPack(
            1,
            1,
            kernel_size=(2, 2),
            stride=1,
            padding=1,
            deform_groups=1,
105
            bias=False).to(device)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        dcn.weight.data.fill_(1.)
        output = dcn(input)
        output.sum().backward()
        assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
        assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
                              1e-2)
        assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
                              dcn_w_grad, 1e-2)
        assert numpy.allclose(
            dcn.conv_offset.weight.grad.cpu().detach().numpy(),
            dcn_offset_w_grad, 1e-2)
        assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
                              dcn_offset_b_grad, 1e-2)

120
    def test_mdconv(self):
121
122
        self._test_mdconv(torch.double, device='cpu')
        self._test_mdconv(torch.float, device='cpu')
123
124
125
126
127

        device = 'mlu' if IS_MLU_AVAILABLE else 'cuda'
        self._test_mdconv(torch.double, device=device)
        self._test_mdconv(torch.float, device=device)
        self._test_mdconv(torch.half, device=device)
128
129
130

        # test amp when torch version >= '1.6.0', the type of
        # input data for mdconv might be torch.float or torch.half
131
        if (TORCH_VERSION != 'parrots'
132
                and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
133
            with autocast(enabled=True):
134
135
                self._test_amp_mdconv(torch.float, device=device)
                self._test_amp_mdconv(torch.half, device=device)