test_modulated_deform_conv.py 4.75 KB
Newer Older
1
2
3
import os

import numpy
4
import pytest
5
6
import torch

7
from mmcv.utils import TORCH_VERSION, digit_version
8
9
10
11
12
13
14
15

try:
    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    # would be imported and used; we should test if our modules support it.
    from torch.cuda.amp import autocast
except ImportError:
    pass

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
cur_dir = os.path.dirname(os.path.abspath(__file__))

input_t = [[[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]]]
output_t = [[[[0.5, 1.5, 2.5, 1.5], [1.0, 3.0, 5.0, 3.0], [1.0, 3.0, 5.0, 3.0],
              [0.5, 1.5, 2.5, 1.5]]]]
input_grad = [[[[2., 2., 2.], [2., 2., 2.], [2., 2., 2.]]]]
dcn_w_grad = [[[[9., 9.], [9., 9.]]]]
dcn_offset_w_grad = [[[[-7.0, -4.0], [0.0, 0.0]]], [[[-9.0, 7.5], [-6.0,
                                                                   5.0]]],
                     [[[-4.0, -7.0], [0.0, 0.0]]],
                     [[[-7.5, -9.0], [-5.0, -6.0]]],
                     [[[-7.0, -4.0], [-7.0, -4.0]]],
                     [[[-6.0, 5.0], [-9.0, 7.5]]],
                     [[[-4.0, -7.0], [-4.0, -7.0]]],
                     [[[-5.0, -6.0], [-7.5, -9.0]]], [[[10.5, 6.0], [7.0,
                                                                     4.0]]],
                     [[[6.0, 10.5], [4.0, 7.0]]], [[[7.0, 4.0], [10.5, 6.0]]],
                     [[[4.0, 7.0], [6.0, 10.5]]]]
dcn_offset_b_grad = [
    -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, 4.5, 4.5, 4.5, 4.5
]


class TestMdconv(object):

41
42
43
    def _test_mdconv(self, dtype=torch.float, device='cuda'):
        if not torch.cuda.is_available() and device == 'cuda':
            pytest.skip('test requires GPU')
44
        from mmcv.ops import ModulatedDeformConv2dPack
45
        input = torch.tensor(input_t, dtype=dtype, device=device)
46
47
48
49
50
51
52
53
54
        input.requires_grad = True

        dcn = ModulatedDeformConv2dPack(
            1,
            1,
            kernel_size=(2, 2),
            stride=1,
            padding=1,
            deform_groups=1,
55
56
57
58
59
            bias=False)

        if device == 'cuda':
            dcn.cuda()

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        dcn.weight.data.fill_(1.)
        dcn.type(dtype)
        output = dcn(input)
        output.sum().backward()
        assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
        assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
                              1e-2)
        assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
                              dcn_w_grad, 1e-2)
        assert numpy.allclose(
            dcn.conv_offset.weight.grad.cpu().detach().numpy(),
            dcn_offset_w_grad, 1e-2)
        assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
                              dcn_offset_b_grad, 1e-2)

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    def _test_amp_mdconv(self, input_dtype=torch.float):
        """The function to test amp released on pytorch 1.6.0.

        The type of input data might be torch.float or torch.half,
        so we should test mdconv in both cases. With amp, the data
        type of model will NOT be set manually.

        Args:
            input_dtype: torch.float or torch.half.
        """
        if not torch.cuda.is_available():
            return
        from mmcv.ops import ModulatedDeformConv2dPack
        input = torch.tensor(input_t).cuda().type(input_dtype)
        input.requires_grad = True

        dcn = ModulatedDeformConv2dPack(
            1,
            1,
            kernel_size=(2, 2),
            stride=1,
            padding=1,
            deform_groups=1,
            bias=False).cuda()
        dcn.weight.data.fill_(1.)
        output = dcn(input)
        output.sum().backward()
        assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
        assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
                              1e-2)
        assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
                              dcn_w_grad, 1e-2)
        assert numpy.allclose(
            dcn.conv_offset.weight.grad.cpu().detach().numpy(),
            dcn_offset_w_grad, 1e-2)
        assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
                              dcn_offset_b_grad, 1e-2)

113
    def test_mdconv(self):
114
115
        self._test_mdconv(torch.double, device='cpu')
        self._test_mdconv(torch.float, device='cpu')
116
117
118
        self._test_mdconv(torch.double)
        self._test_mdconv(torch.float)
        self._test_mdconv(torch.half)
119
120
121

        # test amp when torch version >= '1.6.0', the type of
        # input data for mdconv might be torch.float or torch.half
122
        if (TORCH_VERSION != 'parrots'
123
                and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
124
125
126
            with autocast(enabled=True):
                self._test_amp_mdconv(torch.float)
                self._test_amp_mdconv(torch.half)