test_wrappers.py 11.8 KB
Newer Older
Cao Yuhang's avatar
Cao Yuhang committed
1
2
from unittest.mock import patch

dreamerlin's avatar
dreamerlin committed
3
import pytest
Cao Yuhang's avatar
Cao Yuhang committed
4
5
6
import torch
import torch.nn as nn

dreamerlin's avatar
dreamerlin committed
7
8
from mmcv.cnn.bricks import (Conv2d, Conv3d, ConvTranspose2d, ConvTranspose3d,
                             Linear, MaxPool2d, MaxPool3d)
Cao Yuhang's avatar
Cao Yuhang committed
9

10
11
12
13
if torch.__version__ != 'parrots':
    torch_version = '1.1'
else:
    torch_version = 'parrots'
Cao Yuhang's avatar
Cao Yuhang committed
14

15
16

@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
17
18
19
20
21
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
                padding, dilation):
Cao Yuhang's avatar
Cao Yuhang committed
22
23
24
25
26
    """
    CommandLine:
        xdoctest -m tests/test_wrappers.py test_conv2d
    """
    # train mode
dreamerlin's avatar
dreamerlin committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w)
    torch.manual_seed(0)
    wrapper = Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w).requires_grad_(True)
    torch.manual_seed(0)
    ref = nn.Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
59
60

    # eval mode
dreamerlin's avatar
dreamerlin committed
61
62
63
64
65
66
67
68
    x_empty = torch.randn(0, in_channel, in_h, in_w)
    wrapper = Conv2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
Cao Yuhang's avatar
Cao Yuhang committed
69
70
71
72
    wrapper.eval()
    wrapper(x_empty)


73
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size, stride,
                padding, dilation):
    """
    CommandLine:
        xdoctest -m tests/test_wrappers.py test_conv3d
    """
    # train mode
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    torch.manual_seed(0)
    wrapper = Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h,
                           in_w).requires_grad_(True)
    torch.manual_seed(0)
    ref = nn.Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)

    # eval mode
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    wrapper = Conv3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation)
    wrapper.eval()
    wrapper(x_empty)


131
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
132
133
134
135
136
137
138
139
140
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv_transposed_2d(in_w, in_h, in_channel, out_channel, kernel_size,
                            stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    # out padding must be smaller than either stride or dilation
    op = min(stride, dilation) - 1
141
142
    if torch.__version__ == 'parrots':
        op = 0
dreamerlin's avatar
dreamerlin committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    torch.manual_seed(0)
    wrapper = ConvTranspose2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w)
    torch.manual_seed(0)
    ref = nn.ConvTranspose2d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
175
176

    # eval mode
dreamerlin's avatar
dreamerlin committed
177
    x_empty = torch.randn(0, in_channel, in_h, in_w)
Cao Yuhang's avatar
Cao Yuhang committed
178
    wrapper = ConvTranspose2d(
dreamerlin's avatar
dreamerlin committed
179
180
181
182
183
184
185
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
Cao Yuhang's avatar
Cao Yuhang committed
186
187
188
189
    wrapper.eval()
    wrapper(x_empty)


190
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
def test_conv_transposed_3d(in_w, in_h, in_t, in_channel, out_channel,
                            kernel_size, stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    # out padding must be smaller than either stride or dilation
    op = min(stride, dilation) - 1
    torch.manual_seed(0)
    wrapper = ConvTranspose3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    torch.manual_seed(0)
    ref = nn.ConvTranspose3d(
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
dreamerlin's avatar
dreamerlin committed
232
233

    # eval mode
dreamerlin's avatar
dreamerlin committed
234
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
dreamerlin's avatar
dreamerlin committed
235
    wrapper = ConvTranspose3d(
dreamerlin's avatar
dreamerlin committed
236
237
238
239
240
241
242
        in_channel,
        out_channel,
        kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        output_padding=op)
dreamerlin's avatar
dreamerlin committed
243
244
245
246
    wrapper.eval()
    wrapper(x_empty)


247
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
248
249
250
251
252
253
254
255
256
257
@pytest.mark.parametrize(
    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
def test_max_pool_2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
                     padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    wrapper = MaxPool2d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    wrapper_out = wrapper(x_empty)
Cao Yuhang's avatar
Cao Yuhang committed
258

dreamerlin's avatar
dreamerlin committed
259
260
261
262
263
    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_h, in_w)
    ref = nn.MaxPool2d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
    ref_out = ref(x_normal)
Cao Yuhang's avatar
Cao Yuhang committed
264

dreamerlin's avatar
dreamerlin committed
265
266
    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]
Cao Yuhang's avatar
Cao Yuhang committed
267

dreamerlin's avatar
dreamerlin committed
268
    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
269
270


271
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
272
273
274
@pytest.mark.parametrize(
    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
275
276
277
@pytest.mark.skipif(
    torch.__version__ == 'parrots' and not torch.cuda.is_available(),
    reason='parrots requires CUDA support')
dreamerlin's avatar
dreamerlin committed
278
279
280
281
282
283
def test_max_pool_3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size,
                     stride, padding, dilation):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    wrapper = MaxPool3d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
284
285
    if torch.__version__ == 'parrots':
        x_empty = x_empty.cuda()
dreamerlin's avatar
dreamerlin committed
286
287
288
289
290
    wrapper_out = wrapper(x_empty)
    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    ref = nn.MaxPool3d(
        kernel_size, stride=stride, padding=padding, dilation=dilation)
291
292
    if torch.__version__ == 'parrots':
        x_normal = x_normal.cuda()
dreamerlin's avatar
dreamerlin committed
293
    ref_out = ref(x_normal)
dreamerlin's avatar
dreamerlin committed
294

dreamerlin's avatar
dreamerlin committed
295
296
    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]
dreamerlin's avatar
dreamerlin committed
297

dreamerlin's avatar
dreamerlin committed
298
    assert torch.equal(wrapper(x_normal), ref_out)
dreamerlin's avatar
dreamerlin committed
299
300


301
@patch('torch.__version__', torch_version)
dreamerlin's avatar
dreamerlin committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
@pytest.mark.parametrize('in_w,in_h,in_feature,out_feature', [(10, 10, 1, 1),
                                                              (20, 20, 3, 3)])
def test_linear(in_w, in_h, in_feature, out_feature):
    # wrapper op with 0-dim input
    x_empty = torch.randn(0, in_feature, requires_grad=True)
    torch.manual_seed(0)
    wrapper = Linear(in_feature, out_feature)
    wrapper_out = wrapper(x_empty)

    # torch op with 3-dim input as shape reference
    x_normal = torch.randn(3, in_feature)
    torch.manual_seed(0)
    ref = nn.Linear(in_feature, out_feature)
    ref_out = ref(x_normal)

    assert wrapper_out.shape[0] == 0
    assert wrapper_out.shape[1:] == ref_out.shape[1:]

    wrapper_out.sum().backward()
    assert wrapper.weight.grad is not None
    assert wrapper.weight.grad.shape == wrapper.weight.shape

    assert torch.equal(wrapper(x_normal), ref_out)
Cao Yuhang's avatar
Cao Yuhang committed
325
326
327
328
329
330
331
332

    # eval mode
    x_empty = torch.randn(0, in_feature)
    wrapper = Linear(in_feature, out_feature)
    wrapper.eval()
    wrapper(x_empty)


333
@patch('mmcv.cnn.bricks.wrappers.TORCH_VERSION', (1, 10))
Cao Yuhang's avatar
Cao Yuhang committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def test_nn_op_forward_called():

    for m in ['Conv2d', 'ConvTranspose2d', 'MaxPool2d']:
        with patch(f'torch.nn.{m}.forward') as nn_module_forward:
            # randn input
            x_empty = torch.randn(0, 3, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_empty)
            nn_module_forward.assert_called_with(x_empty)

            # non-randn input
            x_normal = torch.randn(1, 3, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_normal)
            nn_module_forward.assert_called_with(x_normal)

350
351
352
353
354
355
356
357
358
359
360
361
362
363
    for m in ['Conv3d', 'ConvTranspose3d', 'MaxPool3d']:
        with patch(f'torch.nn.{m}.forward') as nn_module_forward:
            # randn input
            x_empty = torch.randn(0, 3, 10, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_empty)
            nn_module_forward.assert_called_with(x_empty)

            # non-randn input
            x_normal = torch.randn(1, 3, 10, 10, 10)
            wrapper = eval(m)(3, 2, 1)
            wrapper(x_normal)
            nn_module_forward.assert_called_with(x_normal)

Cao Yuhang's avatar
Cao Yuhang committed
364
365
366
367
368
    with patch('torch.nn.Linear.forward') as nn_module_forward:
        # randn input
        x_empty = torch.randn(0, 3)
        wrapper = Linear(3, 3)
        wrapper(x_empty)
369
        nn_module_forward.assert_called_with(x_empty)
Cao Yuhang's avatar
Cao Yuhang committed
370
371
372
373
374
375

        # non-randn input
        x_normal = torch.randn(1, 3)
        wrapper = Linear(3, 3)
        wrapper(x_normal)
        nn_module_forward.assert_called_with(x_normal)