test_runner.py 7.53 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
# Copyright (c) Open-MMLab. All rights reserved.
2
import logging
3
import os
4
import os.path as osp
5
6
import random
import string
7
import tempfile
Kai Chen's avatar
Kai Chen committed
8

9
10
11
import pytest
import torch
import torch.nn as nn
12

Kai Chen's avatar
Kai Chen committed
13
from mmcv.parallel import MMDataParallel
14
15
from mmcv.runner import (RUNNERS, EpochBasedRunner, IterBasedRunner,
                         build_runner)
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


class OldStyleModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(3, 3, 1)


class Model(OldStyleModel):

    def train_step(self):
        pass

    def val_step(self):
        pass


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def test_build_runner():
    temp_root = tempfile.gettempdir()
    dir_name = ''.join(
        [random.choice(string.ascii_letters) for _ in range(10)])

    default_args = dict(
        model=Model(),
        work_dir=osp.join(temp_root, dir_name),
        logger=logging.getLogger())
    cfg = dict(type='EpochBasedRunner', max_epochs=1)
    runner = build_runner(cfg, default_args=default_args)
    assert runner._max_epochs == 1
    cfg = dict(type='IterBasedRunner', max_iters=1)
    runner = build_runner(cfg, default_args=default_args)
    assert runner._max_iters == 1

    with pytest.raises(ValueError, match='Only one of'):
        cfg = dict(type='IterBasedRunner', max_epochs=1, max_iters=1)
        runner = build_runner(cfg, default_args=default_args)


@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_epoch_based_runner(runner_class):
57
58
59
60

    with pytest.warns(UserWarning):
        # batch_processor is deprecated
        model = OldStyleModel()
61

62
63
        def batch_processor():
            pass
64

65
        _ = runner_class(model, batch_processor, logger=logging.getLogger())
66
67
68
69

    with pytest.raises(TypeError):
        # batch_processor must be callable
        model = OldStyleModel()
70
        _ = runner_class(model, batch_processor=0, logger=logging.getLogger())
Harry's avatar
Harry committed
71
72
73
74
75

    with pytest.raises(TypeError):
        # optimizer must be a optimizer or a dict of optimizers
        model = Model()
        optimizer = 'NotAOptimizer'
76
        _ = runner_class(
Harry's avatar
Harry committed
77
78
79
80
81
82
            model, optimizer=optimizer, logger=logging.getLogger())

    with pytest.raises(TypeError):
        # optimizer must be a optimizer or a dict of optimizers
        model = Model()
        optimizers = dict(optim1=torch.optim.Adam(), optim2='NotAOptimizer')
83
        _ = runner_class(
Harry's avatar
Harry committed
84
85
86
87
88
            model, optimizer=optimizers, logger=logging.getLogger())

    with pytest.raises(TypeError):
        # logger must be a logging.Logger
        model = Model()
89
        _ = runner_class(model, logger=None)
Harry's avatar
Harry committed
90
91
92
93

    with pytest.raises(TypeError):
        # meta must be a dict or None
        model = Model()
94
        _ = runner_class(model, logger=logging.getLogger(), meta=['list'])
95
96
97
98

    with pytest.raises(AssertionError):
        # model must implement the method train_step()
        model = OldStyleModel()
99
        _ = runner_class(model, logger=logging.getLogger())
100
101
102
103

    with pytest.raises(TypeError):
        # work_dir must be a str or None
        model = Model()
104
        _ = runner_class(model, work_dir=1, logger=logging.getLogger())
105
106
107
108
109
110
111
112

    with pytest.raises(RuntimeError):
        # batch_processor and train_step() cannot be both set

        def batch_processor():
            pass

        model = Model()
113
        _ = runner_class(model, batch_processor, logger=logging.getLogger())
114
115
116
117
118
119
120

    # test work_dir
    model = Model()
    temp_root = tempfile.gettempdir()
    dir_name = ''.join(
        [random.choice(string.ascii_letters) for _ in range(10)])
    work_dir = osp.join(temp_root, dir_name)
121
    _ = runner_class(model, work_dir=work_dir, logger=logging.getLogger())
122
    assert osp.isdir(work_dir)
123
    _ = runner_class(model, work_dir=work_dir, logger=logging.getLogger())
124
125
126
127
    assert osp.isdir(work_dir)
    os.removedirs(work_dir)


128
129
@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_runner_with_parallel(runner_class):
Kai Chen's avatar
Kai Chen committed
130
131
132
133
134

    def batch_processor():
        pass

    model = MMDataParallel(OldStyleModel())
135
    _ = runner_class(model, batch_processor, logger=logging.getLogger())
Kai Chen's avatar
Kai Chen committed
136

137
    model = MMDataParallel(Model())
138
    _ = runner_class(model, logger=logging.getLogger())
139

Kai Chen's avatar
Kai Chen committed
140
141
142
143
144
145
146
    with pytest.raises(RuntimeError):
        # batch_processor and train_step() cannot be both set

        def batch_processor():
            pass

        model = MMDataParallel(Model())
147
        _ = runner_class(model, batch_processor, logger=logging.getLogger())
Kai Chen's avatar
Kai Chen committed
148
149


150
151
@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_save_checkpoint(runner_class):
152
    model = Model()
153
    runner = runner_class(model=model, logger=logging.getLogger())
154

155
156
157
158
    with pytest.raises(TypeError):
        # meta should be None or dict
        runner.save_checkpoint('.', meta=list())

159
160
161
162
163
    with tempfile.TemporaryDirectory() as root:
        runner.save_checkpoint(root)

        latest_path = osp.join(root, 'latest.pth')
        assert osp.exists(latest_path)
164
165
166
167
168
169
170
171

        if isinstance(runner, EpochBasedRunner):
            first_ckp_path = osp.join(root, 'epoch_1.pth')
        elif isinstance(runner, IterBasedRunner):
            first_ckp_path = osp.join(root, 'iter_1.pth')

        assert osp.exists(first_ckp_path)
        assert osp.realpath(latest_path) == osp.realpath(first_ckp_path)
172
173

        torch.load(latest_path)
174
175


176
177
@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
def test_build_lr_momentum_hook(runner_class):
178
    model = Model()
179
    runner = runner_class(model=model, logger=logging.getLogger())
180
181
182

    # test policy that is already title
    lr_config = dict(
Yawei Li's avatar
Yawei Li committed
183
        policy='CosineAnnealing',
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 1

    # test policy that is already title
    lr_config = dict(
        policy='Cyclic',
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 2

    # test policy that is not title
    lr_config = dict(
        policy='cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 3

    # test policy that is title
    lr_config = dict(
        policy='Step',
        warmup='linear',
        warmup_iters=500,
        warmup_ratio=1.0 / 3,
        step=[8, 11])
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 4

    # test policy that is not title
    lr_config = dict(
        policy='step',
        warmup='linear',
        warmup_iters=500,
        warmup_ratio=1.0 / 3,
        step=[8, 11])
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 5

    # test policy that is already title
    mom_config = dict(
Yawei Li's avatar
Yawei Li committed
233
        policy='CosineAnnealing',
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 6

    # test policy that is already title
    mom_config = dict(
        policy='Cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 7

    # test policy that is already title
    mom_config = dict(
        policy='cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 8