test_runner.py 4.96 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
# Copyright (c) Open-MMLab. All rights reserved.
2
import logging
3
import os
4
import os.path as osp
5
6
import random
import string
7
import tempfile
Kai Chen's avatar
Kai Chen committed
8

9
10
11
import pytest
import torch
import torch.nn as nn
12

Kai Chen's avatar
Kai Chen committed
13
from mmcv.parallel import MMDataParallel
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from mmcv.runner import EpochBasedRunner


class OldStyleModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(3, 3, 1)


class Model(OldStyleModel):

    def train_step(self):
        pass

    def val_step(self):
        pass


def test_epoch_based_runner():

    with pytest.warns(UserWarning):
        # batch_processor is deprecated
        model = OldStyleModel()
38

39
40
        def batch_processor():
            pass
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        _ = EpochBasedRunner(model, batch_processor)

    with pytest.raises(TypeError):
        # batch_processor must be callable
        model = OldStyleModel()
        _ = EpochBasedRunner(model, batch_processor=0)

    with pytest.raises(AssertionError):
        # model must implement the method train_step()
        model = OldStyleModel()
        _ = EpochBasedRunner(model)

    with pytest.raises(TypeError):
        # work_dir must be a str or None
        model = Model()
        _ = EpochBasedRunner(model, work_dir=1)

    with pytest.raises(RuntimeError):
        # batch_processor and train_step() cannot be both set

        def batch_processor():
            pass

        model = Model()
        _ = EpochBasedRunner(model, batch_processor)

    # test work_dir
    model = Model()
    temp_root = tempfile.gettempdir()
    dir_name = ''.join(
        [random.choice(string.ascii_letters) for _ in range(10)])
    work_dir = osp.join(temp_root, dir_name)
    _ = EpochBasedRunner(model, work_dir=work_dir)
    assert osp.isdir(work_dir)
    _ = EpochBasedRunner(model, work_dir=work_dir)
    assert osp.isdir(work_dir)
    os.removedirs(work_dir)


Kai Chen's avatar
Kai Chen committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def test_runner_with_parallel():

    def batch_processor():
        pass

    model = MMDataParallel(OldStyleModel())
    _ = EpochBasedRunner(model, batch_processor)

    with pytest.raises(RuntimeError):
        # batch_processor and train_step() cannot be both set

        def batch_processor():
            pass

        model = MMDataParallel(Model())
        _ = EpochBasedRunner(model, batch_processor)


99
100
101
def test_save_checkpoint():
    model = Model()
    runner = EpochBasedRunner(model=model, logger=logging.getLogger())
102
103
104
105
106
107
108
109
110

    with tempfile.TemporaryDirectory() as root:
        runner.save_checkpoint(root)

        latest_path = osp.join(root, 'latest.pth')
        epoch1_path = osp.join(root, 'epoch_1.pth')

        assert osp.exists(latest_path)
        assert osp.exists(epoch1_path)
Kai Chen's avatar
Kai Chen committed
111
        assert osp.realpath(latest_path) == osp.realpath(epoch1_path)
112
113

        torch.load(latest_path)
114
115
116


def test_build_lr_momentum_hook():
117
118
    model = Model()
    runner = EpochBasedRunner(model=model, logger=logging.getLogger())
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

    # test policy that is already title
    lr_config = dict(
        policy='CosineAnealing',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 1

    # test policy that is already title
    lr_config = dict(
        policy='Cyclic',
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 2

    # test policy that is not title
    lr_config = dict(
        policy='cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 3

    # test policy that is title
    lr_config = dict(
        policy='Step',
        warmup='linear',
        warmup_iters=500,
        warmup_ratio=1.0 / 3,
        step=[8, 11])
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 4

    # test policy that is not title
    lr_config = dict(
        policy='step',
        warmup='linear',
        warmup_iters=500,
        warmup_ratio=1.0 / 3,
        step=[8, 11])
    runner.register_lr_hook(lr_config)
    assert len(runner.hooks) == 5

    # test policy that is already title
    mom_config = dict(
        policy='CosineAnealing',
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 6

    # test policy that is already title
    mom_config = dict(
        policy='Cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 7

    # test policy that is already title
    mom_config = dict(
        policy='cyclic',
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_momentum_hook(mom_config)
    assert len(runner.hooks) == 8