test_optflow.py 9.31 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
# flake8: noqa

Kai Chen's avatar
Kai Chen committed
3
4
5
import os
import os.path as osp
import tempfile
6
import time
Kai Chen's avatar
Kai Chen committed
7
8
9
10
11
12
13

import mmcv
import numpy as np
import pytest
from numpy.testing import assert_array_equal, assert_array_almost_equal


Kai Chen's avatar
Kai Chen committed
14
15
16
17
18
19
20
21
22
def test_flowread():
    flow_shape = (60, 80, 2)

    # read .flo file
    flow = mmcv.flowread(osp.join(osp.dirname(__file__), 'data/optflow.flo'))
    assert flow.shape == flow_shape

    # pseudo read
    flow_same = mmcv.flowread(flow)
Kai Chen's avatar
Kai Chen committed
23
    assert_array_equal(flow, flow_same)
Kai Chen's avatar
Kai Chen committed
24
25

    # read quantized flow concatenated vertically
26
27
28
29
    flow = mmcv.flowread(osp.join(osp.dirname(__file__),
                                  'data/optflow_concat0.jpg'),
                         quantize=True,
                         denorm=True)
Kai Chen's avatar
Kai Chen committed
30
31
32
    assert flow.shape == flow_shape

    # read quantized flow concatenated horizontally
33
34
35
36
37
    flow = mmcv.flowread(osp.join(osp.dirname(__file__),
                                  'data/optflow_concat1.jpg'),
                         quantize=True,
                         concat_axis=1,
                         denorm=True)
Kai Chen's avatar
Kai Chen committed
38
39
40
41
42
43
44
45
    assert flow.shape == flow_shape

    # test exceptions
    notflow_file = osp.join(osp.dirname(__file__), 'data/color.jpg')
    with pytest.raises(TypeError):
        mmcv.flowread(1)
    with pytest.raises(IOError):
        mmcv.flowread(notflow_file)
Kai Chen's avatar
Kai Chen committed
46
    with pytest.raises(IOError):
Kai Chen's avatar
Kai Chen committed
47
        mmcv.flowread(notflow_file, quantize=True)
Kai Chen's avatar
Kai Chen committed
48
    with pytest.raises(ValueError):
Kai Chen's avatar
Kai Chen committed
49
        mmcv.flowread(np.zeros((100, 100, 1)))
Kai Chen's avatar
Kai Chen committed
50
51


Kai Chen's avatar
Kai Chen committed
52
def test_flowwrite():
Kai Chen's avatar
Kai Chen committed
53
    flow = np.random.rand(100, 100, 2).astype(np.float32)
Kai Chen's avatar
Kai Chen committed
54

Kai Chen's avatar
Kai Chen committed
55
56
    # write to a .flo file
    _, filename = tempfile.mkstemp()
Kai Chen's avatar
Kai Chen committed
57
58
    mmcv.flowwrite(flow, filename)
    flow_from_file = mmcv.flowread(filename)
Kai Chen's avatar
Kai Chen committed
59
60
    assert_array_equal(flow, flow_from_file)
    os.remove(filename)
Kai Chen's avatar
Kai Chen committed
61

Kai Chen's avatar
Kai Chen committed
62
    # write to two .jpg files
Kai Chen's avatar
Kai Chen committed
63
64
    tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_flow.jpg')
    for concat_axis in range(2):
65
66
67
68
        mmcv.flowwrite(flow,
                       tmp_filename,
                       quantize=True,
                       concat_axis=concat_axis)
Kai Chen's avatar
Kai Chen committed
69
70
71
72
73
74
75
76
        shape = (200, 100) if concat_axis == 0 else (100, 200)
        assert osp.isfile(tmp_filename)
        assert mmcv.imread(tmp_filename, flag='unchanged').shape == shape
        os.remove(tmp_filename)

    # test exceptions
    with pytest.raises(AssertionError):
        mmcv.flowwrite(flow, tmp_filename, quantize=True, concat_axis=2)
Kai Chen's avatar
Kai Chen committed
77
78
79
80
81
82
83
84
85
86
87
88


def test_quantize_flow():
    flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15
    max_val = 5.0
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                val = flow[i, j, k] + max_val
                val = min(max(val, 0), 2 * max_val)
Kai Chen's avatar
Kai Chen committed
89
                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
Kai Chen's avatar
Kai Chen committed
90
91
92
93
94
95
96
97
98
99
100
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])
    max_val = 0.5
    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True)
    ref = np.zeros_like(flow, dtype=np.uint8)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
            for k in range(ref.shape[2]):
                scale = flow.shape[1] if k == 0 else flow.shape[0]
                val = flow[i, j, k] / scale + max_val
                val = min(max(val, 0), 2 * max_val)
Kai Chen's avatar
Kai Chen committed
101
                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
Kai Chen's avatar
Kai Chen committed
102
103
104
105
106
107
108
109
110
111
112
113
    assert_array_equal(dx, ref[..., 0])
    assert_array_equal(dy, ref[..., 1])


def test_dequantize_flow():
    dx = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    dy = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    max_val = 5.0
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False)
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
Kai Chen's avatar
Kai Chen committed
114
115
            ref[i, j, 0] = float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val
            ref[i, j, 1] = float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val
Kai Chen's avatar
Kai Chen committed
116
117
118
119
120
121
122
    assert_array_almost_equal(flow, ref)
    max_val = 0.5
    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True)
    h, w = dx.shape
    ref = np.zeros_like(flow, dtype=np.float32)
    for i in range(ref.shape[0]):
        for j in range(ref.shape[1]):
123
124
125
126
            ref[i, j, 0] = (float(dx[i, j] + 0.5) * 2 * max_val / 255 -
                            max_val) * w
            ref[i, j, 1] = (float(dy[i, j] + 0.5) * 2 * max_val / 255 -
                            max_val) * h
Kai Chen's avatar
Kai Chen committed
127
128
129
130
    assert_array_almost_equal(flow, ref)


def test_flow2rgb():
131
132
    flow = np.array([[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]],
                    dtype=np.float32)
Kai Chen's avatar
Kai Chen committed
133
134
135
136
137
138
139
140
141
142
143
144
145
    flow_img = mmcv.flow2rgb(flow)
    # yapf: disable
    assert_array_almost_equal(
        flow_img,
        np.array([[[1., 1., 1.],
                   [1., 0.826074731, 0.683772236],
                   [1., 0.652149462, 0.367544472],
                   [1., 0.265650552, 5.96046448e-08],
                   [0., 0., 0.]]],
                 dtype=np.float32))
    # yapf: enable


146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def test_flow_warp():
    def np_flow_warp(flow, img):
        output = np.zeros_like(img, dtype=img.dtype)
        height = flow.shape[0]
        width = flow.shape[1]

        grid = np.indices((height, width)).swapaxes(0, 1).swapaxes(1, 2)
        dx = grid[:, :, 0] + flow[:, :, 1]
        dy = grid[:, :, 1] + flow[:, :, 0]
        sx = np.floor(dx).astype(int)
        sy = np.floor(dy).astype(int)
        valid = (sx >= 0) & (sx < height - 1) & (sy >= 0) & (sy < width - 1)

        output[valid, :] = img[dx[valid].round().astype(int), dy[valid].round(
        ).astype(int), :]

        return output

    dim = 500
    a = np.random.randn(dim, dim, 3) * 10 + 125
    b = np.random.randn(dim, dim, 2) + 2 + 0.2

    c = mmcv.flow_warp(a, b, interpolate_mode='nearest')

    d = np_flow_warp(b, a)

    simple_a = np.zeros((5, 5, 3))
    simple_a[2, 2, 0] = 1
    simple_b = np.ones((5, 5, 2))

    simple_res_c = np.zeros((5, 5, 3))
    simple_res_c[1, 1, 0] = 1

    res_c = mmcv.flow_warp(simple_a, simple_b, interpolate_mode='bilinear')

    assert_array_equal(c, d)
    assert_array_equal(res_c, simple_res_c)


Kai Chen's avatar
Kai Chen committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def test_make_color_wheel():
    default_color_wheel = mmcv.make_color_wheel()
    color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2])
    # yapf: disable
    assert_array_equal(default_color_wheel, np.array(
        [[1.       , 0.        , 0.        ],
        [1.        , 0.06666667, 0.        ],
        [1.        , 0.13333334, 0.        ],
        [1.        , 0.2       , 0.        ],
        [1.        , 0.26666668, 0.        ],
        [1.        , 0.33333334, 0.        ],
        [1.        , 0.4       , 0.        ],
        [1.        , 0.46666667, 0.        ],
        [1.        , 0.53333336, 0.        ],
        [1.        , 0.6       , 0.        ],
        [1.        , 0.6666667 , 0.        ],
        [1.        , 0.73333335, 0.        ],
        [1.        , 0.8       , 0.        ],
        [1.        , 0.8666667 , 0.        ],
        [1.        , 0.93333334, 0.        ],
        [1.        , 1.        , 0.        ],
        [0.8333333 , 1.        , 0.        ],
        [0.6666667 , 1.        , 0.        ],
        [0.5       , 1.        , 0.        ],
        [0.33333334, 1.        , 0.        ],
        [0.16666667, 1.        , 0.        ],
        [0.        , 1.        , 0.        ],
        [0.        , 1.        , 0.25      ],
        [0.        , 1.        , 0.5       ],
        [0.        , 1.        , 0.75      ],
        [0.        , 1.        , 1.        ],
        [0.        , 0.90909094, 1.        ],
        [0.        , 0.8181818 , 1.        ],
        [0.        , 0.72727275, 1.        ],
        [0.        , 0.6363636 , 1.        ],
        [0.        , 0.54545456, 1.        ],
        [0.        , 0.45454547, 1.        ],
        [0.        , 0.36363637, 1.        ],
        [0.        , 0.27272728, 1.        ],
        [0.        , 0.18181819, 1.        ],
        [0.        , 0.09090909, 1.        ],
        [0.        , 0.        , 1.        ],
        [0.07692308, 0.        , 1.        ],
        [0.15384616, 0.        , 1.        ],
        [0.23076923, 0.        , 1.        ],
        [0.30769232, 0.        , 1.        ],
        [0.3846154 , 0.        , 1.        ],
        [0.46153846, 0.        , 1.        ],
        [0.53846157, 0.        , 1.        ],
        [0.61538464, 0.        , 1.        ],
        [0.6923077 , 0.        , 1.        ],
        [0.7692308 , 0.        , 1.        ],
        [0.84615386, 0.        , 1.        ],
        [0.9230769 , 0.        , 1.        ],
        [1.        , 0.        , 1.        ],
        [1.        , 0.        , 0.8333333 ],
        [1.        , 0.        , 0.6666667 ],
        [1.        , 0.        , 0.5       ],
        [1.        , 0.        , 0.33333334],
        [1.        , 0.        , 0.16666667]], dtype=np.float32))

    assert_array_equal(
        color_wheel,
        np.array([[1., 0. , 0. ],
                 [1. , 0.5, 0. ],
                 [1. , 1. , 0. ],
                 [0.5, 1. , 0. ],
                 [0. , 1. , 0. ],
                 [0. , 1. , 0.5],
                 [0. , 1. , 1. ],
                 [0. , 0.5, 1. ],
                 [0. , 0. , 1. ],
                 [0.5, 0. , 1. ],
                 [1. , 0. , 1. ],
                 [1. , 0. , 0.5]], dtype=np.float32))
    # yapf: enable