test_deform_conv.py 8.87 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import numpy as np
3
import pytest
4
5
import torch

6
from mmcv.utils import TORCH_VERSION, digit_version
7
8
9
10
11
12
13
14

try:
    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    # would be imported and used; we should test if our modules support it.
    from torch.cuda.amp import autocast
except ImportError:
    pass

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
                 [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
                 [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
                 [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]

gt_out = [[[[1.650, 0.], [0.000, 0.]]]]
gt_x_grad = [[[[-0.666, 0.204, 0.000], [0.030, -0.416, 0.012],
               [0.000, 0.252, 0.129]]]]
gt_offset_weight_grad = [[[[1.44, 2.88], [0.00, 1.44]]],
                         [[[-0.72, -1.44], [0.00, -0.72]]],
                         [[[0.00, 0.00], [0.00, 0.00]]],
                         [[[0.00, 0.00], [0.00, 0.00]]],
                         [[[-0.10, -0.20], [0.00, -0.10]]],
                         [[[-0.08, -0.16], [0.00, -0.08]]],
                         [[[-0.54, -1.08], [0.00, -0.54]]],
                         [[[-0.54, -1.08], [0.00, -0.54]]]]
gt_offset_bias_grad = [1.44, -0.72, 0., 0., -0.10, -0.08, -0.54, -0.54],
gt_deform_weight_grad = [[[[3.62, 0.], [0.40, 0.18]]]]


38
class TestDeformconv:
39

40
41
42
    def _test_deformconv(self,
                         dtype=torch.float,
                         threshold=1e-3,
43
44
45
                         device='cuda',
                         batch_size=10,
                         im2col_step=2):
46
47
        if not torch.cuda.is_available() and device == 'cuda':
            pytest.skip('test requires GPU')
48
49
50
        from mmcv.ops import DeformConv2dPack
        c_in = 1
        c_out = 1
51
52
53
54
55
        batch_size = 10
        repeated_input = np.repeat(input, batch_size, axis=0)
        repeated_gt_out = np.repeat(gt_out, batch_size, axis=0)
        repeated_gt_x_grad = np.repeat(gt_x_grad, batch_size, axis=0)
        x = torch.tensor(repeated_input, device=device, dtype=dtype)
56
        x.requires_grad = True
57
58
59
60
61
62
63
        model = DeformConv2dPack(
            in_channels=c_in,
            out_channels=c_out,
            kernel_size=2,
            stride=1,
            padding=0,
            im2col_step=im2col_step)
64
65
66
67
68
69
        model.conv_offset.weight.data = torch.nn.Parameter(
            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
        model.conv_offset.bias.data = torch.nn.Parameter(
            torch.Tensor(offset_bias).reshape(8))
        model.weight.data = torch.nn.Parameter(
            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
70
71
72
        if device == 'cuda':
            model.cuda()
        model.type(dtype)
73
74
75
76

        out = model(x)
        out.backward(torch.ones_like(out))

77
78
        assert np.allclose(out.data.detach().cpu().numpy(), repeated_gt_out,
                           threshold)
xiabo's avatar
xiabo committed
79
80
81
82
83
84
85
86
87
88
        cpu_data = x.grad.detach().cpu().numpy()
        for i in range(10):
          for j in range(3):
            for k in range(3):
              if ((abs(cpu_data[i][0][j][k] - repeated_gt_x_grad[i][0][j][k])) > threshold):
                print("====error====",cpu_data[i][0][j][k], repeated_gt_x_grad[i][0][j][k])
                assert(0)

        #assert np.allclose(x.grad.detach().cpu().numpy(), repeated_gt_x_grad,
        #                   threshold)
89
90
        # the batch size of the input is increased which results in
        # a larger gradient so we need to divide by the batch_size
91
        assert np.allclose(
92
            model.conv_offset.weight.grad.detach().cpu().numpy() / batch_size,
93
            gt_offset_weight_grad, threshold)
94
95
96
97
98
99
        assert np.allclose(
            model.conv_offset.bias.grad.detach().cpu().numpy() / batch_size,
            gt_offset_bias_grad, threshold)
        assert np.allclose(
            model.weight.grad.detach().cpu().numpy() / batch_size,
            gt_deform_weight_grad, threshold)
100

101
        from mmcv.ops import DeformConv2d
102

103
104
105
106
107
108
109
110
111
112
113
114
115
        # test bias
        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
        assert not hasattr(model, 'bias')
        # test bias=True
        with pytest.raises(AssertionError):
            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
        # test in_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 2, 3, groups=2)
        # test out_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 4, 3, groups=3)

116
117
118
119
120
    def _test_amp_deformconv(self,
                             input_dtype,
                             threshold=1e-3,
                             batch_size=10,
                             im2col_step=2):
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        """The function to test amp released on pytorch 1.6.0.

        The type of input data might be torch.float or torch.half,
        so we should test deform_conv in both cases. With amp, the
        data type of model will NOT be set manually.

        Args:
            input_dtype: torch.float or torch.half.
            threshold: the same as above function.
        """
        if not torch.cuda.is_available():
            return
        from mmcv.ops import DeformConv2dPack
        c_in = 1
        c_out = 1
136
137
138
139
        repeated_input = np.repeat(input, batch_size, axis=0)
        repeated_gt_out = np.repeat(gt_out, batch_size, axis=0)
        repeated_gt_x_grad = np.repeat(gt_x_grad, batch_size, axis=0)
        x = torch.Tensor(repeated_input).cuda().type(input_dtype)
140
        x.requires_grad = True
141
142
143
144
145
146
147
        model = DeformConv2dPack(
            in_channels=c_in,
            out_channels=c_out,
            kernel_size=2,
            stride=1,
            padding=0,
            im2col_step=im2col_step)
148
149
150
151
152
153
154
155
156
157
158
        model.conv_offset.weight.data = torch.nn.Parameter(
            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
        model.conv_offset.bias.data = torch.nn.Parameter(
            torch.Tensor(offset_bias).reshape(8))
        model.weight.data = torch.nn.Parameter(
            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
        model.cuda()

        out = model(x)
        out.backward(torch.ones_like(out))

159
160
        assert np.allclose(out.data.detach().cpu().numpy(), repeated_gt_out,
                           threshold)
xiabo's avatar
xiabo committed
161
162
163
164
165
166
167
168
169
170
171

        cpu_data = x.grad.detach().cpu().numpy()
        for i in range(10):
          for j in range(3):
            for k in range(3):
              if ((abs(cpu_data[i][0][j][k] - repeated_gt_x_grad[i][0][j][k])) > threshold):
                print("====error====",cpu_data[i][0][j][k], repeated_gt_x_grad[i][0][j][k])
                assert(0)

        #assert np.allclose(x.grad.detach().cpu().numpy(), repeated_gt_x_grad,
        #                   threshold)
172
        assert np.allclose(
173
            model.conv_offset.weight.grad.detach().cpu().numpy() / batch_size,
174
            gt_offset_weight_grad, threshold)
175
176
177
178
179
180
        assert np.allclose(
            model.conv_offset.bias.grad.detach().cpu().numpy() / batch_size,
            gt_offset_bias_grad, threshold)
        assert np.allclose(
            model.weight.grad.detach().cpu().numpy() / batch_size,
            gt_deform_weight_grad, threshold)
181
182

        from mmcv.ops import DeformConv2d
183

184
185
186
187
188
189
190
191
192
193
194
195
196
        # test bias
        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
        assert not hasattr(model, 'bias')
        # test bias=True
        with pytest.raises(AssertionError):
            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
        # test in_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 2, 3, groups=2)
        # test out_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 4, 3, groups=3)

197
    def test_deformconv(self):
198
199
        self._test_deformconv(torch.double, device='cpu')
        self._test_deformconv(torch.float, device='cpu', threshold=1e-1)
200
201
        self._test_deformconv(torch.double)
        self._test_deformconv(torch.float)
202
        self._test_deformconv(torch.half, threshold=1e-1)
203
204
205
206
207
208
209
        # test batch_size < im2col_step
        self._test_deformconv(torch.float, batch_size=1, im2col_step=2)
        # test bach_size % im2col_step != 0
        with pytest.raises(
                AssertionError,
                match='batch size must be divisible by im2col_step'):
            self._test_deformconv(torch.float, batch_size=10, im2col_step=3)
210
211
212

        # test amp when torch version >= '1.6.0', the type of
        # input data for deformconv might be torch.float or torch.half
213
        if (TORCH_VERSION != 'parrots'
214
                and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
215
216
217
            with autocast(enabled=True):
                self._test_amp_deformconv(torch.float, 1e-1)
                self._test_amp_deformconv(torch.half, 1e-1)