test_deform_conv.py 6.54 KB
Newer Older
1
import numpy as np
2
import pytest
3
4
import torch

5
from mmcv.utils import TORCH_VERSION, digit_version
6
7
8
9
10
11
12
13

try:
    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    # would be imported and used; we should test if our modules support it.
    from torch.cuda.amp import autocast
except ImportError:
    pass

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
                 [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
                 [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
                 [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]

gt_out = [[[[1.650, 0.], [0.000, 0.]]]]
gt_x_grad = [[[[-0.666, 0.204, 0.000], [0.030, -0.416, 0.012],
               [0.000, 0.252, 0.129]]]]
gt_offset_weight_grad = [[[[1.44, 2.88], [0.00, 1.44]]],
                         [[[-0.72, -1.44], [0.00, -0.72]]],
                         [[[0.00, 0.00], [0.00, 0.00]]],
                         [[[0.00, 0.00], [0.00, 0.00]]],
                         [[[-0.10, -0.20], [0.00, -0.10]]],
                         [[[-0.08, -0.16], [0.00, -0.08]]],
                         [[[-0.54, -1.08], [0.00, -0.54]]],
                         [[[-0.54, -1.08], [0.00, -0.54]]]]
gt_offset_bias_grad = [1.44, -0.72, 0., 0., -0.10, -0.08, -0.54, -0.54],
gt_deform_weight_grad = [[[[3.62, 0.], [0.40, 0.18]]]]


class TestDeformconv(object):

39
40
41
42
43
44
    def _test_deformconv(self,
                         dtype=torch.float,
                         threshold=1e-3,
                         device='cuda'):
        if not torch.cuda.is_available() and device == 'cuda':
            pytest.skip('test requires GPU')
45
46
47
        from mmcv.ops import DeformConv2dPack
        c_in = 1
        c_out = 1
48
        x = torch.tensor(input, device=device, dtype=dtype)
49
50
51
52
53
54
55
56
        x.requires_grad = True
        model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0)
        model.conv_offset.weight.data = torch.nn.Parameter(
            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
        model.conv_offset.bias.data = torch.nn.Parameter(
            torch.Tensor(offset_bias).reshape(8))
        model.weight.data = torch.nn.Parameter(
            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
57
58
59
        if device == 'cuda':
            model.cuda()
        model.type(dtype)
60
61
62
63
64
65
66
67
68
69
70
71
72
73

        out = model(x)
        out.backward(torch.ones_like(out))

        assert np.allclose(out.data.detach().cpu().numpy(), gt_out, threshold)
        assert np.allclose(x.grad.detach().cpu().numpy(), gt_x_grad, threshold)
        assert np.allclose(
            model.conv_offset.weight.grad.detach().cpu().numpy(),
            gt_offset_weight_grad, threshold)
        assert np.allclose(model.conv_offset.bias.grad.detach().cpu().numpy(),
                           gt_offset_bias_grad, threshold)
        assert np.allclose(model.weight.grad.detach().cpu().numpy(),
                           gt_deform_weight_grad, threshold)

74
        from mmcv.ops import DeformConv2d
75

76
77
78
79
80
81
82
83
84
85
86
87
88
        # test bias
        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
        assert not hasattr(model, 'bias')
        # test bias=True
        with pytest.raises(AssertionError):
            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
        # test in_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 2, 3, groups=2)
        # test out_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 4, 3, groups=3)

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    def _test_amp_deformconv(self, input_dtype, threshold=1e-3):
        """The function to test amp released on pytorch 1.6.0.

        The type of input data might be torch.float or torch.half,
        so we should test deform_conv in both cases. With amp, the
        data type of model will NOT be set manually.

        Args:
            input_dtype: torch.float or torch.half.
            threshold: the same as above function.
        """
        if not torch.cuda.is_available():
            return
        from mmcv.ops import DeformConv2dPack
        c_in = 1
        c_out = 1
        x = torch.Tensor(input).cuda().type(input_dtype)
        x.requires_grad = True
        model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0)
        model.conv_offset.weight.data = torch.nn.Parameter(
            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
        model.conv_offset.bias.data = torch.nn.Parameter(
            torch.Tensor(offset_bias).reshape(8))
        model.weight.data = torch.nn.Parameter(
            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
        model.cuda()

        out = model(x)
        out.backward(torch.ones_like(out))

        assert np.allclose(out.data.detach().cpu().numpy(), gt_out, threshold)
        assert np.allclose(x.grad.detach().cpu().numpy(), gt_x_grad, threshold)
        assert np.allclose(
            model.conv_offset.weight.grad.detach().cpu().numpy(),
            gt_offset_weight_grad, threshold)
        assert np.allclose(model.conv_offset.bias.grad.detach().cpu().numpy(),
                           gt_offset_bias_grad, threshold)
        assert np.allclose(model.weight.grad.detach().cpu().numpy(),
                           gt_deform_weight_grad, threshold)

        from mmcv.ops import DeformConv2d
130

131
132
133
134
135
136
137
138
139
140
141
142
143
        # test bias
        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
        assert not hasattr(model, 'bias')
        # test bias=True
        with pytest.raises(AssertionError):
            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
        # test in_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 2, 3, groups=2)
        # test out_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 4, 3, groups=3)

144
    def test_deformconv(self):
145
146
        self._test_deformconv(torch.double, device='cpu')
        self._test_deformconv(torch.float, device='cpu', threshold=1e-1)
147
148
        self._test_deformconv(torch.double)
        self._test_deformconv(torch.float)
149
        self._test_deformconv(torch.half, threshold=1e-1)
150
151
152

        # test amp when torch version >= '1.6.0', the type of
        # input data for deformconv might be torch.float or torch.half
153
        if (TORCH_VERSION != 'parrots'
154
                and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
155
156
157
            with autocast(enabled=True):
                self._test_amp_deformconv(torch.float, 1e-1)
                self._test_amp_deformconv(torch.half, 1e-1)