test_geometric.py 16.7 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) Open-MMLab. All rights reserved.
import os.path as osp

import cv2
import numpy as np
import pytest
from numpy.testing import assert_array_equal

import mmcv


class TestGeometric:

    @classmethod
    def setup_class(cls):
        cls.data_dir = osp.join(osp.dirname(__file__), '../data')
        # the test img resolution is 400x300
        cls.img_path = osp.join(cls.data_dir, 'color.jpg')
        cls.img = cv2.imread(cls.img_path)

    def test_imresize(self):
        resized_img = mmcv.imresize(self.img, (1000, 600))
        assert resized_img.shape == (600, 1000, 3)
        resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600),
                                                      True)
        assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5
                and h_scale == 2.0)
        resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype)
        resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst)
        assert id(resized_img_dst) == id(resized_img)
        assert_array_equal(resized_img_dst,
                           mmcv.imresize(self.img, (1000, 600)))
        for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
            resized_img = mmcv.imresize(
                self.img, (1000, 600), interpolation=mode)
            assert resized_img.shape == (600, 1000, 3)

    def test_imresize_like(self):
        a = np.zeros((100, 200, 3))
        resized_img = mmcv.imresize_like(self.img, a)
        assert resized_img.shape == (100, 200, 3)

    def test_rescale_size(self):
        new_size, scale_factor = mmcv.rescale_size((400, 300), 1.5, True)
        assert new_size == (600, 450) and scale_factor == 1.5
        new_size, scale_factor = mmcv.rescale_size((400, 300), 0.934, True)
        assert new_size == (374, 280) and scale_factor == 0.934

        new_size = mmcv.rescale_size((400, 300), 1.5)
        assert new_size == (600, 450)
        new_size = mmcv.rescale_size((400, 300), 0.934)
        assert new_size == (374, 280)

        new_size, scale_factor = mmcv.rescale_size((400, 300), (1000, 600),
                                                   True)
        assert new_size == (800, 600) and scale_factor == 2.0
        new_size, scale_factor = mmcv.rescale_size((400, 300), (180, 200),
                                                   True)
        assert new_size == (200, 150) and scale_factor == 0.5

        new_size = mmcv.rescale_size((400, 300), (1000, 600))
        assert new_size == (800, 600)
        new_size = mmcv.rescale_size((400, 300), (180, 200))
        assert new_size == (200, 150)

        with pytest.raises(ValueError):
            mmcv.rescale_size((400, 300), -0.5)
        with pytest.raises(TypeError):
            mmcv.rescale_size()((400, 300), [100, 100])

    def test_imrescale(self):
        # rescale by a certain factor
        resized_img = mmcv.imrescale(self.img, 1.5)
        assert resized_img.shape == (450, 600, 3)
        resized_img = mmcv.imrescale(self.img, 0.934)
        assert resized_img.shape == (280, 374, 3)

        # rescale by a certain max_size
        # resize (400, 300) to (max_1000, max_600)
        resized_img = mmcv.imrescale(self.img, (1000, 600))
        assert resized_img.shape == (600, 800, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (1000, 600), return_scale=True)
        assert resized_img.shape == (600, 800, 3) and scale == 2.0
        # resize (400, 300) to (max_200, max_180)
        resized_img = mmcv.imrescale(self.img, (180, 200))
        assert resized_img.shape == (150, 200, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (180, 200), return_scale=True)
        assert resized_img.shape == (150, 200, 3) and scale == 0.5

        # test exceptions
        with pytest.raises(ValueError):
            mmcv.imrescale(self.img, -0.5)
        with pytest.raises(TypeError):
            mmcv.imrescale(self.img, [100, 100])

    def test_imflip(self):
        # test horizontal flip (color image)
        img = np.random.rand(80, 60, 3)
        h, w, c = img.shape
        flipped_img = mmcv.imflip(img)
        assert flipped_img.shape == img.shape
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
        # test vertical flip (color image)
        flipped_img = mmcv.imflip(img, direction='vertical')
        assert flipped_img.shape == img.shape
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
        # test horizontal flip (grayscale image)
        img = np.random.rand(80, 60)
        h, w = img.shape
        flipped_img = mmcv.imflip(img)
        assert flipped_img.shape == img.shape
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[i, w - 1 - j]
        # test vertical flip (grayscale image)
        flipped_img = mmcv.imflip(img, direction='vertical')
        assert flipped_img.shape == img.shape
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[h - 1 - i, j]

    def test_imflip_(self):
        # test horizontal flip (color image)
        img = np.random.rand(80, 60, 3)
        h, w, c = img.shape
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip)
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]

        # test vertical flip (color image)
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]

        # test horizontal flip (grayscale image)
        img = np.random.rand(80, 60)
        h, w = img.shape
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip)
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[i, w - 1 - j]
                assert flipped_img[i, j] == img_for_flip[i, j]

        # test vertical flip (grayscale image)
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[h - 1 - i, j]
                assert flipped_img[i, j] == img_for_flip[i, j]

    def test_imcrop(self):
        # yapf: disable
        bboxes = np.array([[100, 100, 199, 199],  # center
                           [0, 0, 150, 100],  # left-top corner
                           [250, 200, 399, 299],  # right-bottom corner
                           [0, 100, 399, 199],  # wide
                           [150, 0, 299, 299]])  # tall
        # yapf: enable

        # crop one bbox
        patch = mmcv.imcrop(self.img, bboxes[0, :])
        patches = mmcv.imcrop(self.img, bboxes[[0], :])
        assert patch.shape == (100, 100, 3)
        patch_path = osp.join(self.data_dir, 'patches')
        ref_patch = np.load(patch_path + '/0.npy')
        assert_array_equal(patch, ref_patch)
        assert isinstance(patches, list) and len(patches) == 1
        assert_array_equal(patches[0], ref_patch)

        # crop with no scaling and padding
        patches = mmcv.imcrop(self.img, bboxes)
        assert len(patches) == bboxes.shape[0]
        for i in range(len(patches)):
204
            ref_patch = np.load(patch_path + f'/{i}.npy')
Kai Chen's avatar
Kai Chen committed
205
206
207
208
209
            assert_array_equal(patches[i], ref_patch)

        # crop with scaling and no padding
        patches = mmcv.imcrop(self.img, bboxes, 1.2)
        for i in range(len(patches)):
210
            ref_patch = np.load(patch_path + f'/scale_{i}.npy')
Kai Chen's avatar
Kai Chen committed
211
212
213
214
215
            assert_array_equal(patches[i], ref_patch)

        # crop with scaling and padding
        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0])
        for i in range(len(patches)):
216
            ref_patch = np.load(patch_path + f'/pad_{i}.npy')
Kai Chen's avatar
Kai Chen committed
217
218
219
            assert_array_equal(patches[i], ref_patch)
        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0)
        for i in range(len(patches)):
220
            ref_patch = np.load(patch_path + f'/pad0_{i}.npy')
Kai Chen's avatar
Kai Chen committed
221
222
223
224
225
            assert_array_equal(patches[i], ref_patch)

    def test_impad(self):
        # grayscale image
        img = np.random.rand(10, 10).astype(np.float32)
226
        padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0)
Kai Chen's avatar
Kai Chen committed
227
228
229
230
231
232
233
234
        assert_array_equal(img, padded_img[:10, :10])
        assert_array_equal(
            np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
        assert_array_equal(
            np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])

        # RGB image
        img = np.random.rand(10, 10, 3).astype(np.float32)
235
        padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0)
Kai Chen's avatar
Kai Chen committed
236
237
238
239
240
241
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
        assert_array_equal(
            np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])

242
        # RGB image with different values for three channels.
Kai Chen's avatar
Kai Chen committed
243
        img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
244
245
        padded_img = mmcv.impad(
            img, padding=(0, 0, 2, 5), pad_val=(100, 110, 120))
Kai Chen's avatar
Kai Chen committed
246
247
248
249
250
251
252
253
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        # Pad the grayscale image to shape (15, 12)
        img = np.random.rand(10, 10).astype(np.float32)
        padded_img = mmcv.impad(img, shape=(15, 12))
        assert_array_equal(img, padded_img[:10, :10])
        assert_array_equal(
            np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
        assert_array_equal(
            np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])

        # Pad the RGB image to shape (15, 12)
        img = np.random.rand(10, 10, 3).astype(np.float32)
        padded_img = mmcv.impad(img, shape=(15, 12))
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
        assert_array_equal(
            np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])

        # Pad the RGB image to shape (15, 12) with different values for
        # three channels.
        img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
        padded_img = mmcv.impad(img, shape=(15, 12), pad_val=(100, 110, 120))
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])

        # RGB image with padding=[5, 2]
        img = np.random.rand(10, 10, 3).astype(np.float32)
        padded_img = mmcv.impad(img, padding=(5, 2), pad_val=0)

        assert padded_img.shape == (14, 20, 3)
        assert_array_equal(img, padded_img[2:12, 5:15, :])
        assert_array_equal(
            np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, :5, :])
        assert_array_equal(
            np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, :5, :])
        assert_array_equal(
            np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, 15:, :])
        assert_array_equal(
            np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, 15:, :])

        # RGB image with type(pad_val) = tuple
        pad_val = (0, 1, 2)
        img = np.random.rand(10, 10, 3).astype(np.float32)
        padded_img = mmcv.impad(img, padding=(0, 0, 5, 2), pad_val=pad_val)

        assert padded_img.shape == (12, 15, 3)
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(pad_val[0] * np.ones((2, 15, 1), dtype='float32'),
                           padded_img[10:, :, 0:1])
        assert_array_equal(pad_val[1] * np.ones((2, 15, 1), dtype='float32'),
                           padded_img[10:, :, 1:2])
        assert_array_equal(pad_val[2] * np.ones((2, 15, 1), dtype='float32'),
                           padded_img[10:, :, 2:3])

        assert_array_equal(pad_val[0] * np.ones((12, 5, 1), dtype='float32'),
                           padded_img[:, 10:, 0:1])
        assert_array_equal(pad_val[1] * np.ones((12, 5, 1), dtype='float32'),
                           padded_img[:, 10:, 1:2])
        assert_array_equal(pad_val[2] * np.ones((12, 5, 1), dtype='float32'),
                           padded_img[:, 10:, 2:3])

        # test different padding mode with channel number = 3
        for mode in ['constant', 'edge', 'reflect', 'symmetric']:
            img = np.random.rand(10, 10, 3).astype(np.float32)
            padded_img = mmcv.impad(
                img, padding=(0, 0, 5, 2), pad_val=pad_val, padding_mode=mode)
            assert padded_img.shape == (12, 15, 3)

        # test different padding mode with channel number = 1
        for mode in ['constant', 'edge', 'reflect', 'symmetric']:
            img = np.random.rand(10, 10).astype(np.float32)
            padded_img = mmcv.impad(
                img, padding=(0, 0, 5, 2), pad_val=0, padding_mode=mode)
            assert padded_img.shape == (12, 15)

        # Padding must be a int or a 2, or 4 element tuple.
        with pytest.raises(ValueError):
            mmcv.impad(img, padding=(1, 1, 1))

        # pad_val must be a int or a tuple
        with pytest.raises(TypeError):
            mmcv.impad(img, padding=(1, 1, 1, 1), pad_val='wrong')

        # When pad_val is a tuple,
        # len(pad_val) should be equal to img.shape[-1]
        img = np.random.rand(10, 10, 3).astype(np.float32)
Kai Chen's avatar
Kai Chen committed
345
        with pytest.raises(AssertionError):
346
347
            mmcv.impad(img, padding=3, pad_val=(100, 200))

Kai Chen's avatar
Kai Chen committed
348
        with pytest.raises(AssertionError):
349
350
            mmcv.impad(img, padding=2, pad_val=0, padding_mode='unknown')

Kai Chen's avatar
Kai Chen committed
351
        with pytest.raises(AssertionError):
352
            mmcv.impad(img, shape=(12, 15), padding=(0, 0, 5, 2))
Kai Chen's avatar
Kai Chen committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

    def test_impad_to_multiple(self):
        img = np.random.rand(11, 14, 3).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 4)
        assert padded_img.shape == (12, 16, 3)
        img = np.random.rand(20, 12).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 5)
        assert padded_img.shape == (20, 15)
        img = np.random.rand(20, 12).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 2)
        assert padded_img.shape == (20, 12)

    def test_imrotate(self):
        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
        assert_array_equal(mmcv.imrotate(img, 0), img)
        img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]])
        assert_array_equal(mmcv.imrotate(img, 90), img_r)
        img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]])
        assert_array_equal(mmcv.imrotate(img, -90), img_r)

        img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8)
        img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]])
        assert_array_equal(mmcv.imrotate(img, 90), img_r)
        img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]])
        assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r)
        img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]])
        assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r)
        img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]])
        assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r)

        with pytest.raises(ValueError):
            mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True)