test_image.py 23.1 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
# Copyright (c) Open-MMLab. All rights reserved.
2
3
4
5
import os
import os.path as osp
import tempfile

6
import cv2
7
8
import numpy as np
import pytest
Kai Chen's avatar
Kai Chen committed
9
10
11
from numpy.testing import assert_array_almost_equal, assert_array_equal

import mmcv
12
13
14
15
16
17
18
19
20
21


class TestImage(object):

    @classmethod
    def setup_class(cls):
        # the test img resolution is 400x300
        cls.img_path = osp.join(osp.dirname(__file__), 'data/color.jpg')
        cls.gray_img_path = osp.join(
            osp.dirname(__file__), 'data/grayscale.jpg')
22
        cls.img = cv2.imread(cls.img_path)
lizz's avatar
lizz committed
23
24
        cls.mean = np.float32(np.array([123.675, 116.28, 103.53]))
        cls.std = np.float32(np.array([58.395, 57.12, 57.375]))
25
26
27
28
29
30
31
32

    def assert_img_equal(self, img, ref_img, ratio_thr=0.999):
        assert img.shape == ref_img.shape
        assert img.dtype == ref_img.dtype
        area = ref_img.shape[0] * ref_img.shape[1]
        diff = np.abs(img.astype('int32') - ref_img.astype('int32'))
        assert np.sum(diff <= 1) / float(area) > ratio_thr

33
    def test_imread(self):
Joanna's avatar
Joanna committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
        # backend cv2
        mmcv.use_backend('cv2')

        img_cv2_color_bgr = mmcv.imread(self.img_path)
        assert img_cv2_color_bgr.shape == (300, 400, 3)
        img_cv2_color_rgb = mmcv.imread(self.img_path, channel_order='rgb')
        assert img_cv2_color_rgb.shape == (300, 400, 3)
        assert_array_equal(img_cv2_color_rgb[:, :, ::-1], img_cv2_color_bgr)
        img_cv2_grayscale1 = mmcv.imread(self.img_path, 'grayscale')
        assert img_cv2_grayscale1.shape == (300, 400)
        img_cv2_grayscale2 = mmcv.imread(self.gray_img_path)
        assert img_cv2_grayscale2.shape == (300, 400, 3)
        img_cv2_unchanged = mmcv.imread(self.gray_img_path, 'unchanged')
        assert img_cv2_unchanged.shape == (300, 400)
        img_cv2_unchanged = mmcv.imread(img_cv2_unchanged)
        assert_array_equal(img_cv2_unchanged, mmcv.imread(img_cv2_unchanged))
50
        with pytest.raises(TypeError):
51
            mmcv.imread(1)
52

Joanna's avatar
Joanna committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        # backend turbojpeg
        mmcv.use_backend('turbojpeg')

        img_turbojpeg_color_bgr = mmcv.imread(self.img_path)
        assert img_turbojpeg_color_bgr.shape == (300, 400, 3)
        assert_array_equal(img_turbojpeg_color_bgr, img_cv2_color_bgr)

        img_turbojpeg_color_rgb = mmcv.imread(
            self.img_path, channel_order='rgb')
        assert img_turbojpeg_color_rgb.shape == (300, 400, 3)
        assert_array_equal(img_turbojpeg_color_rgb, img_cv2_color_rgb)

        with pytest.raises(ValueError):
            mmcv.imread(self.img_path, channel_order='unsupport_order')

        img_turbojpeg_grayscale1 = mmcv.imread(self.img_path, flag='grayscale')
        assert img_turbojpeg_grayscale1.shape == (300, 400)
        assert_array_equal(img_turbojpeg_grayscale1, img_cv2_grayscale1)

        img_turbojpeg_grayscale2 = mmcv.imread(self.gray_img_path)
        assert img_turbojpeg_grayscale2.shape == (300, 400, 3)
        assert_array_equal(img_turbojpeg_grayscale2, img_cv2_grayscale2)

        img_turbojpeg_grayscale2 = mmcv.imread(img_turbojpeg_grayscale2)
        assert_array_equal(img_turbojpeg_grayscale2,
                           mmcv.imread(img_turbojpeg_grayscale2))

        with pytest.raises(ValueError):
            mmcv.imread(self.gray_img_path, 'unchanged')

        with pytest.raises(TypeError):
            mmcv.imread(1)

        with pytest.raises(AssertionError):
            mmcv.use_backend('unsupport_backend')

        mmcv.use_backend('cv2')

91
    def test_imfrombytes(self):
Joanna's avatar
Joanna committed
92
93
        # backend cv2
        mmcv.use_backend('cv2')
94
95
        with open(self.img_path, 'rb') as f:
            img_bytes = f.read()
Joanna's avatar
Joanna committed
96
97
98
99
100
101
102
103
104
105
106
107
        img_cv2 = mmcv.imfrombytes(img_bytes)
        assert img_cv2.shape == (300, 400, 3)

        # backend turbojpeg
        mmcv.use_backend('turbojpeg')
        with open(self.img_path, 'rb') as f:
            img_bytes = f.read()
        img_turbojpeg = mmcv.imfrombytes(img_bytes)
        assert img_turbojpeg.shape == (300, 400, 3)
        assert_array_equal(img_cv2, img_turbojpeg)

        mmcv.use_backend('cv2')
108

109
110
    def test_imwrite(self):
        img = mmcv.imread(self.img_path)
111
        out_file = osp.join(tempfile.gettempdir(), 'mmcv_test.jpg')
112
113
        mmcv.imwrite(img, out_file)
        rewrite_img = mmcv.imread(out_file)
114
115
116
        os.remove(out_file)
        self.assert_img_equal(img, rewrite_img)

lizz's avatar
lizz committed
117
118
119
120
121
    def test_imnormalize(self):
        rgbimg = self.img[:, :, ::-1]
        baseline = (rgbimg - self.mean) / self.std
        img = mmcv.imnormalize(self.img, self.mean, self.std)
        assert np.allclose(img, baseline)
Joanna's avatar
Joanna committed
122
        assert id(img) != id(self.img)
lizz's avatar
lizz committed
123
124
        img = mmcv.imnormalize(rgbimg, self.mean, self.std, to_rgb=False)
        assert np.allclose(img, baseline)
Joanna's avatar
Joanna committed
125
126
127
128
129
130
131
132
133
134
135
136
137
        assert id(img) != id(rgbimg)

    def test_imnormalize_(self):
        img_for_normalize = np.float32(self.img.copy())
        rgbimg_for_normalize = np.float32(self.img[:, :, ::-1].copy())
        baseline = (rgbimg_for_normalize - self.mean) / self.std
        img = mmcv.imnormalize_(img_for_normalize, self.mean, self.std)
        assert np.allclose(img_for_normalize, baseline)
        assert id(img) == id(img_for_normalize)
        img = mmcv.imnormalize_(
            rgbimg_for_normalize, self.mean, self.std, to_rgb=False)
        assert np.allclose(img, baseline)
        assert id(img) == id(rgbimg_for_normalize)
lizz's avatar
lizz committed
138
139
140
141
142
143
144
145
146
147

    def test_imdenormalize(self):
        normimg = (self.img[:, :, ::-1] - self.mean) / self.std
        rgbbaseline = (normimg * self.std + self.mean)
        bgrbaseline = rgbbaseline[:, :, ::-1]
        img = mmcv.imdenormalize(normimg, self.mean, self.std)
        assert np.allclose(img, bgrbaseline)
        img = mmcv.imdenormalize(normimg, self.mean, self.std, to_bgr=False)
        assert np.allclose(img, rgbbaseline)

148
149
150
    def test_bgr2gray(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.bgr2gray(in_img)
Kai Chen's avatar
Kai Chen committed
151
152
153
        computed_gray = (
            in_img[:, :, 0] * 0.114 + in_img[:, :, 1] * 0.587 +
            in_img[:, :, 2] * 0.299)
154
155
156
157
158
        assert_array_almost_equal(out_img, computed_gray, decimal=4)
        out_img_3d = mmcv.bgr2gray(in_img, True)
        assert out_img_3d.shape == (10, 10, 1)
        assert_array_almost_equal(out_img_3d[..., 0], out_img, decimal=4)

Kai Chen's avatar
Kai Chen committed
159
160
161
162
163
164
165
166
167
168
169
    def test_rgb2gray(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.rgb2gray(in_img)
        computed_gray = (
            in_img[:, :, 0] * 0.299 + in_img[:, :, 1] * 0.587 +
            in_img[:, :, 2] * 0.114)
        assert_array_almost_equal(out_img, computed_gray, decimal=4)
        out_img_3d = mmcv.rgb2gray(in_img, True)
        assert out_img_3d.shape == (10, 10, 1)
        assert_array_almost_equal(out_img_3d[..., 0], out_img, decimal=4)

170
171
172
173
174
175
176
    def test_gray2bgr(self):
        in_img = np.random.rand(10, 10).astype(np.float32)
        out_img = mmcv.gray2bgr(in_img)
        assert out_img.shape == (10, 10, 3)
        for i in range(3):
            assert_array_almost_equal(out_img[..., i], in_img, decimal=4)

Kai Chen's avatar
Kai Chen committed
177
178
179
180
181
182
183
    def test_gray2rgb(self):
        in_img = np.random.rand(10, 10).astype(np.float32)
        out_img = mmcv.gray2rgb(in_img)
        assert out_img.shape == (10, 10, 3)
        for i in range(3):
            assert_array_almost_equal(out_img[..., i], in_img, decimal=4)

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    def test_bgr2rgb(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.bgr2rgb(in_img)
        assert out_img.shape == in_img.shape
        assert_array_equal(out_img[..., 0], in_img[..., 2])
        assert_array_equal(out_img[..., 1], in_img[..., 1])
        assert_array_equal(out_img[..., 2], in_img[..., 0])

    def test_rgb2bgr(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.rgb2bgr(in_img)
        assert out_img.shape == in_img.shape
        assert_array_equal(out_img[..., 0], in_img[..., 2])
        assert_array_equal(out_img[..., 1], in_img[..., 1])
        assert_array_equal(out_img[..., 2], in_img[..., 0])

    def test_bgr2hsv(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.bgr2hsv(in_img)
        argmax = in_img.argmax(axis=2)
        computed_hsv = np.empty_like(in_img, dtype=in_img.dtype)
        for i in range(in_img.shape[0]):
            for j in range(in_img.shape[1]):
                b = in_img[i, j, 0]
                g = in_img[i, j, 1]
                r = in_img[i, j, 2]
                v = max(r, g, b)
                s = (v - min(r, g, b)) / v if v != 0 else 0
                if argmax[i, j] == 0:
                    h = 240 + 60 * (r - g) / (v - min(r, g, b))
                elif argmax[i, j] == 1:
                    h = 120 + 60 * (b - r) / (v - min(r, g, b))
                else:
                    h = 60 * (g - b) / (v - min(r, g, b))
                if h < 0:
                    h += 360
                computed_hsv[i, j, :] = [h, s, v]
        assert_array_almost_equal(out_img, computed_hsv, decimal=2)

Gu Wang's avatar
Gu Wang committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    def test_bgr2hls(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.bgr2hls(in_img)
        argmax = in_img.argmax(axis=2)
        computed_hls = np.empty_like(in_img, dtype=in_img.dtype)
        for i in range(in_img.shape[0]):
            for j in range(in_img.shape[1]):
                b = in_img[i, j, 0]
                g = in_img[i, j, 1]
                r = in_img[i, j, 2]
                maxc = max(r, g, b)
                minc = min(r, g, b)
                _l = (minc + maxc) / 2.0
                if minc == maxc:
                    h = 0.0
                    s = 0.0
                if _l <= 0.5:
                    s = (maxc - minc) / (maxc + minc)
                else:
                    s = (maxc - minc) / (2.0 - maxc - minc)
                if argmax[i, j] == 2:
                    h = 60 * (g - b) / (maxc - minc)
                elif argmax[i, j] == 1:
                    h = 60 * (2.0 + (b - r) / (maxc - minc))
                else:
                    h = 60 * (4.0 + (r - g) / (maxc - minc))
                if h < 0:
                    h += 360
                computed_hls[i, j, :] = [h, _l, s]
        assert_array_almost_equal(out_img, computed_hls, decimal=2)

254
255
    def test_imresize(self):
        resized_img = mmcv.imresize(self.img, (1000, 600))
256
        assert resized_img.shape == (600, 1000, 3)
257
258
        resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600),
                                                      True)
259
260
        assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5
                and h_scale == 2.0)
Joanna's avatar
Joanna committed
261
262
263
264
265
        resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype)
        resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst)
        assert id(resized_img_dst) == id(resized_img)
        assert_array_equal(resized_img_dst,
                           mmcv.imresize(self.img, (1000, 600)))
266
        for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
267
268
            resized_img = mmcv.imresize(
                self.img, (1000, 600), interpolation=mode)
269
270
            assert resized_img.shape == (600, 1000, 3)

271
    def test_imresize_like(self):
272
        a = np.zeros((100, 200, 3))
273
        resized_img = mmcv.imresize_like(self.img, a)
274
275
        assert resized_img.shape == (100, 200, 3)

Joanna's avatar
Joanna committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    def test_rescale_size(self):
        new_size, scale_factor = mmcv.rescale_size((400, 300), 1.5, True)
        assert new_size == (600, 450) and scale_factor == 1.5
        new_size, scale_factor = mmcv.rescale_size((400, 300), 0.934, True)
        assert new_size == (374, 280) and scale_factor == 0.934

        new_size = mmcv.rescale_size((400, 300), 1.5)
        assert new_size == (600, 450)
        new_size = mmcv.rescale_size((400, 300), 0.934)
        assert new_size == (374, 280)

        new_size, scale_factor = mmcv.rescale_size((400, 300), (1000, 600),
                                                   True)
        assert new_size == (800, 600) and scale_factor == 2.0
        new_size, scale_factor = mmcv.rescale_size((400, 300), (180, 200),
                                                   True)
        assert new_size == (200, 150) and scale_factor == 0.5

        new_size = mmcv.rescale_size((400, 300), (1000, 600))
        assert new_size == (800, 600)
        new_size = mmcv.rescale_size((400, 300), (180, 200))
        assert new_size == (200, 150)

        with pytest.raises(ValueError):
            mmcv.rescale_size((400, 300), -0.5)
        with pytest.raises(TypeError):
            mmcv.rescale_size()((400, 300), [100, 100])

304
305
306
    def test_imrescale(self):
        # rescale by a certain factor
        resized_img = mmcv.imrescale(self.img, 1.5)
307
        assert resized_img.shape == (450, 600, 3)
308
        resized_img = mmcv.imrescale(self.img, 0.934)
309
310
        assert resized_img.shape == (280, 374, 3)

311
        # rescale by a certain max_size
312
        # resize (400, 300) to (max_1000, max_600)
313
        resized_img = mmcv.imrescale(self.img, (1000, 600))
314
        assert resized_img.shape == (600, 800, 3)
315
316
        resized_img, scale = mmcv.imrescale(
            self.img, (1000, 600), return_scale=True)
317
318
        assert resized_img.shape == (600, 800, 3) and scale == 2.0
        # resize (400, 300) to (max_200, max_180)
319
        resized_img = mmcv.imrescale(self.img, (180, 200))
320
        assert resized_img.shape == (150, 200, 3)
321
322
        resized_img, scale = mmcv.imrescale(
            self.img, (180, 200), return_scale=True)
323
        assert resized_img.shape == (150, 200, 3) and scale == 0.5
324
325

        # test exceptions
326
        with pytest.raises(ValueError):
327
328
329
            mmcv.imrescale(self.img, -0.5)
        with pytest.raises(TypeError):
            mmcv.imrescale(self.img, [100, 100])
330

Kai Chen's avatar
Kai Chen committed
331
    def test_imflip(self):
Kai Chen's avatar
Kai Chen committed
332
        # test horizontal flip (color image)
Kai Chen's avatar
Kai Chen committed
333
334
        img = np.random.rand(80, 60, 3)
        h, w, c = img.shape
Kai Chen's avatar
Kai Chen committed
335
336
        flipped_img = mmcv.imflip(img)
        assert flipped_img.shape == img.shape
Kai Chen's avatar
Kai Chen committed
337
338
339
        for i in range(h):
            for j in range(w):
                for k in range(c):
Kai Chen's avatar
Kai Chen committed
340
341
342
343
                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
        # test vertical flip (color image)
        flipped_img = mmcv.imflip(img, direction='vertical')
        assert flipped_img.shape == img.shape
Kai Chen's avatar
Kai Chen committed
344
345
346
        for i in range(h):
            for j in range(w):
                for k in range(c):
Kai Chen's avatar
Kai Chen committed
347
348
                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
        # test horizontal flip (grayscale image)
Kai Chen's avatar
Kai Chen committed
349
        img = np.random.rand(80, 60)
Kai Chen's avatar
Kai Chen committed
350
351
352
        h, w = img.shape
        flipped_img = mmcv.imflip(img)
        assert flipped_img.shape == img.shape
Kai Chen's avatar
Kai Chen committed
353
354
        for i in range(h):
            for j in range(w):
Kai Chen's avatar
Kai Chen committed
355
356
357
358
                assert flipped_img[i, j] == img[i, w - 1 - j]
        # test vertical flip (grayscale image)
        flipped_img = mmcv.imflip(img, direction='vertical')
        assert flipped_img.shape == img.shape
Kai Chen's avatar
Kai Chen committed
359
360
        for i in range(h):
            for j in range(w):
Kai Chen's avatar
Kai Chen committed
361
                assert flipped_img[i, j] == img[h - 1 - i, j]
Kai Chen's avatar
Kai Chen committed
362

Joanna's avatar
Joanna committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    def test_imflip_(self):
        # test horizontal flip (color image)
        img = np.random.rand(80, 60, 3)
        h, w, c = img.shape
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip)
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]

        # test vertical flip (color image)
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]

        # test horizontal flip (grayscale image)
        img = np.random.rand(80, 60)
        h, w = img.shape
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip)
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[i, w - 1 - j]
                assert flipped_img[i, j] == img_for_flip[i, j]

        # test vertical flip (grayscale image)
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[h - 1 - i, j]
                assert flipped_img[i, j] == img_for_flip[i, j]

414
    def test_imcrop(self):
415
416
417
418
419
420
421
        # yapf: disable
        bboxes = np.array([[100, 100, 199, 199],  # center
                           [0, 0, 150, 100],  # left-top corner
                           [250, 200, 399, 299],  # right-bottom corner
                           [0, 100, 399, 199],  # wide
                           [150, 0, 299, 299]])  # tall
        # yapf: enable
422

423
        # crop one bbox
424
425
        patch = mmcv.imcrop(self.img, bboxes[0, :])
        patches = mmcv.imcrop(self.img, bboxes[[0], :])
426
427
428
429
430
431
        assert patch.shape == (100, 100, 3)
        patch_path = osp.join(osp.dirname(__file__), 'data/patches')
        ref_patch = np.load(patch_path + '/0.npy')
        self.assert_img_equal(patch, ref_patch)
        assert isinstance(patches, list) and len(patches) == 1
        self.assert_img_equal(patches[0], ref_patch)
432

433
        # crop with no scaling and padding
434
        patches = mmcv.imcrop(self.img, bboxes)
435
436
437
438
        assert len(patches) == bboxes.shape[0]
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/{}.npy'.format(i))
            self.assert_img_equal(patches[i], ref_patch)
439

440
        # crop with scaling and no padding
441
        patches = mmcv.imcrop(self.img, bboxes, 1.2)
442
443
444
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/scale_{}.npy'.format(i))
            self.assert_img_equal(patches[i], ref_patch)
445

446
        # crop with scaling and padding
447
        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0])
448
449
450
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/pad_{}.npy'.format(i))
            self.assert_img_equal(patches[i], ref_patch)
451
        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0)
452
453
454
455
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/pad0_{}.npy'.format(i))
            self.assert_img_equal(patches[i], ref_patch)

456
    def test_impad(self):
457
458
459
460
461
462
463
464
465
466
        # grayscale image
        img = np.random.rand(10, 10).astype(np.float32)
        padded_img = mmcv.impad(img, (15, 12), 0)
        assert_array_equal(img, padded_img[:10, :10])
        assert_array_equal(
            np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
        assert_array_equal(
            np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])

        # RGB image
467
        img = np.random.rand(10, 10, 3).astype(np.float32)
468
        padded_img = mmcv.impad(img, (15, 12), 0)
469
470
471
472
473
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
        assert_array_equal(
            np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])
474

475
        img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
476
        padded_img = mmcv.impad(img, (15, 12, 3), [100, 110, 120])
477
478
479
480
481
482
483
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])
484

485
        with pytest.raises(AssertionError):
486
            mmcv.impad(img, (15, ), 0)
487
        with pytest.raises(AssertionError):
488
            mmcv.impad(img, (5, 5), 0)
489
        with pytest.raises(AssertionError):
490
            mmcv.impad(img, (5, 5), [0, 1])
491

Kai Chen's avatar
Kai Chen committed
492
493
494
495
496
497
498
499
500
501
502
    def test_impad_to_multiple(self):
        img = np.random.rand(11, 14, 3).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 4)
        assert padded_img.shape == (12, 16, 3)
        img = np.random.rand(20, 12).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 5)
        assert padded_img.shape == (20, 15)
        img = np.random.rand(20, 12).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 2)
        assert padded_img.shape == (20, 12)

503
    def test_imrotate(self):
504
        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
505
        assert_array_equal(mmcv.imrotate(img, 0), img)
506
        img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]])
507
        assert_array_equal(mmcv.imrotate(img, 90), img_r)
508
        img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]])
509
        assert_array_equal(mmcv.imrotate(img, -90), img_r)
510
511
512

        img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8)
        img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]])
513
        assert_array_equal(mmcv.imrotate(img, 90), img_r)
514
        img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]])
515
        assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r)
516
        img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]])
517
        assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r)
518
        img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]])
519
520
521
522
        assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r)

        with pytest.raises(ValueError):
            mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True)
Yue Zhao's avatar
Yue Zhao committed
523
524
525
526
527
528
529

    def test_iminvert(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[255, 127, 0], [254, 128, 1], [253, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.iminvert(img), img_r)
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

    def test_solarize(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[0, 127, 0], [1, 127, 1], [2, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.solarize(img), img_r)
        img_r = np.array([[0, 127, 0], [1, 128, 1], [2, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.solarize(img, 100), img_r)

    def test_posterize(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[0, 128, 128], [0, 0, 128], [0, 128, 128]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.posterize(img, 1), img_r)
        img_r = np.array([[0, 128, 224], [0, 96, 224], [0, 128, 224]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.posterize(img, 3), img_r)