test_image.py 21.5 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
# Copyright (c) Open-MMLab. All rights reserved.
2
3
4
5
import os
import os.path as osp
import tempfile

6
import cv2
7
8
import numpy as np
import pytest
Kai Chen's avatar
Kai Chen committed
9
10
11
from numpy.testing import assert_array_almost_equal, assert_array_equal

import mmcv
12
13
14
15
16
17
18
19
20
21


class TestImage(object):

    @classmethod
    def setup_class(cls):
        # the test img resolution is 400x300
        cls.img_path = osp.join(osp.dirname(__file__), 'data/color.jpg')
        cls.gray_img_path = osp.join(
            osp.dirname(__file__), 'data/grayscale.jpg')
22
        cls.img = cv2.imread(cls.img_path)
lizz's avatar
lizz committed
23
24
        cls.mean = np.float32(np.array([123.675, 116.28, 103.53]))
        cls.std = np.float32(np.array([58.395, 57.12, 57.375]))
25
26
27
28
29
30
31
32

    def assert_img_equal(self, img, ref_img, ratio_thr=0.999):
        assert img.shape == ref_img.shape
        assert img.dtype == ref_img.dtype
        area = ref_img.shape[0] * ref_img.shape[1]
        diff = np.abs(img.astype('int32') - ref_img.astype('int32'))
        assert np.sum(diff <= 1) / float(area) > ratio_thr

33
    def test_imread(self):
Joanna's avatar
Joanna committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
        # backend cv2
        mmcv.use_backend('cv2')

        img_cv2_color_bgr = mmcv.imread(self.img_path)
        assert img_cv2_color_bgr.shape == (300, 400, 3)
        img_cv2_color_rgb = mmcv.imread(self.img_path, channel_order='rgb')
        assert img_cv2_color_rgb.shape == (300, 400, 3)
        assert_array_equal(img_cv2_color_rgb[:, :, ::-1], img_cv2_color_bgr)
        img_cv2_grayscale1 = mmcv.imread(self.img_path, 'grayscale')
        assert img_cv2_grayscale1.shape == (300, 400)
        img_cv2_grayscale2 = mmcv.imread(self.gray_img_path)
        assert img_cv2_grayscale2.shape == (300, 400, 3)
        img_cv2_unchanged = mmcv.imread(self.gray_img_path, 'unchanged')
        assert img_cv2_unchanged.shape == (300, 400)
        img_cv2_unchanged = mmcv.imread(img_cv2_unchanged)
        assert_array_equal(img_cv2_unchanged, mmcv.imread(img_cv2_unchanged))
50
        with pytest.raises(TypeError):
51
            mmcv.imread(1)
52

Joanna's avatar
Joanna committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        # backend turbojpeg
        mmcv.use_backend('turbojpeg')

        img_turbojpeg_color_bgr = mmcv.imread(self.img_path)
        assert img_turbojpeg_color_bgr.shape == (300, 400, 3)
        assert_array_equal(img_turbojpeg_color_bgr, img_cv2_color_bgr)

        img_turbojpeg_color_rgb = mmcv.imread(
            self.img_path, channel_order='rgb')
        assert img_turbojpeg_color_rgb.shape == (300, 400, 3)
        assert_array_equal(img_turbojpeg_color_rgb, img_cv2_color_rgb)

        with pytest.raises(ValueError):
            mmcv.imread(self.img_path, channel_order='unsupport_order')

        img_turbojpeg_grayscale1 = mmcv.imread(self.img_path, flag='grayscale')
        assert img_turbojpeg_grayscale1.shape == (300, 400)
        assert_array_equal(img_turbojpeg_grayscale1, img_cv2_grayscale1)

        img_turbojpeg_grayscale2 = mmcv.imread(self.gray_img_path)
        assert img_turbojpeg_grayscale2.shape == (300, 400, 3)
        assert_array_equal(img_turbojpeg_grayscale2, img_cv2_grayscale2)

        img_turbojpeg_grayscale2 = mmcv.imread(img_turbojpeg_grayscale2)
        assert_array_equal(img_turbojpeg_grayscale2,
                           mmcv.imread(img_turbojpeg_grayscale2))

        with pytest.raises(ValueError):
            mmcv.imread(self.gray_img_path, 'unchanged')

        with pytest.raises(TypeError):
            mmcv.imread(1)

        with pytest.raises(AssertionError):
            mmcv.use_backend('unsupport_backend')

        mmcv.use_backend('cv2')

91
    def test_imfrombytes(self):
Joanna's avatar
Joanna committed
92
93
        # backend cv2
        mmcv.use_backend('cv2')
94
95
        with open(self.img_path, 'rb') as f:
            img_bytes = f.read()
Joanna's avatar
Joanna committed
96
97
98
99
100
101
102
103
104
105
106
107
        img_cv2 = mmcv.imfrombytes(img_bytes)
        assert img_cv2.shape == (300, 400, 3)

        # backend turbojpeg
        mmcv.use_backend('turbojpeg')
        with open(self.img_path, 'rb') as f:
            img_bytes = f.read()
        img_turbojpeg = mmcv.imfrombytes(img_bytes)
        assert img_turbojpeg.shape == (300, 400, 3)
        assert_array_equal(img_cv2, img_turbojpeg)

        mmcv.use_backend('cv2')
108

109
110
    def test_imwrite(self):
        img = mmcv.imread(self.img_path)
111
        out_file = osp.join(tempfile.gettempdir(), 'mmcv_test.jpg')
112
113
        mmcv.imwrite(img, out_file)
        rewrite_img = mmcv.imread(out_file)
114
115
116
        os.remove(out_file)
        self.assert_img_equal(img, rewrite_img)

lizz's avatar
lizz committed
117
118
119
120
121
    def test_imnormalize(self):
        rgbimg = self.img[:, :, ::-1]
        baseline = (rgbimg - self.mean) / self.std
        img = mmcv.imnormalize(self.img, self.mean, self.std)
        assert np.allclose(img, baseline)
Joanna's avatar
Joanna committed
122
        assert id(img) != id(self.img)
lizz's avatar
lizz committed
123
124
        img = mmcv.imnormalize(rgbimg, self.mean, self.std, to_rgb=False)
        assert np.allclose(img, baseline)
Joanna's avatar
Joanna committed
125
126
127
128
129
130
131
132
133
134
135
136
137
        assert id(img) != id(rgbimg)

    def test_imnormalize_(self):
        img_for_normalize = np.float32(self.img.copy())
        rgbimg_for_normalize = np.float32(self.img[:, :, ::-1].copy())
        baseline = (rgbimg_for_normalize - self.mean) / self.std
        img = mmcv.imnormalize_(img_for_normalize, self.mean, self.std)
        assert np.allclose(img_for_normalize, baseline)
        assert id(img) == id(img_for_normalize)
        img = mmcv.imnormalize_(
            rgbimg_for_normalize, self.mean, self.std, to_rgb=False)
        assert np.allclose(img, baseline)
        assert id(img) == id(rgbimg_for_normalize)
lizz's avatar
lizz committed
138
139
140
141
142
143
144
145
146
147

    def test_imdenormalize(self):
        normimg = (self.img[:, :, ::-1] - self.mean) / self.std
        rgbbaseline = (normimg * self.std + self.mean)
        bgrbaseline = rgbbaseline[:, :, ::-1]
        img = mmcv.imdenormalize(normimg, self.mean, self.std)
        assert np.allclose(img, bgrbaseline)
        img = mmcv.imdenormalize(normimg, self.mean, self.std, to_bgr=False)
        assert np.allclose(img, rgbbaseline)

148
149
150
    def test_bgr2gray(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.bgr2gray(in_img)
Kai Chen's avatar
Kai Chen committed
151
152
153
        computed_gray = (
            in_img[:, :, 0] * 0.114 + in_img[:, :, 1] * 0.587 +
            in_img[:, :, 2] * 0.299)
154
155
156
157
158
        assert_array_almost_equal(out_img, computed_gray, decimal=4)
        out_img_3d = mmcv.bgr2gray(in_img, True)
        assert out_img_3d.shape == (10, 10, 1)
        assert_array_almost_equal(out_img_3d[..., 0], out_img, decimal=4)

Kai Chen's avatar
Kai Chen committed
159
160
161
162
163
164
165
166
167
168
169
    def test_rgb2gray(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.rgb2gray(in_img)
        computed_gray = (
            in_img[:, :, 0] * 0.299 + in_img[:, :, 1] * 0.587 +
            in_img[:, :, 2] * 0.114)
        assert_array_almost_equal(out_img, computed_gray, decimal=4)
        out_img_3d = mmcv.rgb2gray(in_img, True)
        assert out_img_3d.shape == (10, 10, 1)
        assert_array_almost_equal(out_img_3d[..., 0], out_img, decimal=4)

170
171
172
173
174
175
176
    def test_gray2bgr(self):
        in_img = np.random.rand(10, 10).astype(np.float32)
        out_img = mmcv.gray2bgr(in_img)
        assert out_img.shape == (10, 10, 3)
        for i in range(3):
            assert_array_almost_equal(out_img[..., i], in_img, decimal=4)

Kai Chen's avatar
Kai Chen committed
177
178
179
180
181
182
183
    def test_gray2rgb(self):
        in_img = np.random.rand(10, 10).astype(np.float32)
        out_img = mmcv.gray2rgb(in_img)
        assert out_img.shape == (10, 10, 3)
        for i in range(3):
            assert_array_almost_equal(out_img[..., i], in_img, decimal=4)

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    def test_bgr2rgb(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.bgr2rgb(in_img)
        assert out_img.shape == in_img.shape
        assert_array_equal(out_img[..., 0], in_img[..., 2])
        assert_array_equal(out_img[..., 1], in_img[..., 1])
        assert_array_equal(out_img[..., 2], in_img[..., 0])

    def test_rgb2bgr(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.rgb2bgr(in_img)
        assert out_img.shape == in_img.shape
        assert_array_equal(out_img[..., 0], in_img[..., 2])
        assert_array_equal(out_img[..., 1], in_img[..., 1])
        assert_array_equal(out_img[..., 2], in_img[..., 0])

    def test_bgr2hsv(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.bgr2hsv(in_img)
        argmax = in_img.argmax(axis=2)
        computed_hsv = np.empty_like(in_img, dtype=in_img.dtype)
        for i in range(in_img.shape[0]):
            for j in range(in_img.shape[1]):
                b = in_img[i, j, 0]
                g = in_img[i, j, 1]
                r = in_img[i, j, 2]
                v = max(r, g, b)
                s = (v - min(r, g, b)) / v if v != 0 else 0
                if argmax[i, j] == 0:
                    h = 240 + 60 * (r - g) / (v - min(r, g, b))
                elif argmax[i, j] == 1:
                    h = 120 + 60 * (b - r) / (v - min(r, g, b))
                else:
                    h = 60 * (g - b) / (v - min(r, g, b))
                if h < 0:
                    h += 360
                computed_hsv[i, j, :] = [h, s, v]
        assert_array_almost_equal(out_img, computed_hsv, decimal=2)

Gu Wang's avatar
Gu Wang committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    def test_bgr2hls(self):
        in_img = np.random.rand(10, 10, 3).astype(np.float32)
        out_img = mmcv.bgr2hls(in_img)
        argmax = in_img.argmax(axis=2)
        computed_hls = np.empty_like(in_img, dtype=in_img.dtype)
        for i in range(in_img.shape[0]):
            for j in range(in_img.shape[1]):
                b = in_img[i, j, 0]
                g = in_img[i, j, 1]
                r = in_img[i, j, 2]
                maxc = max(r, g, b)
                minc = min(r, g, b)
                _l = (minc + maxc) / 2.0
                if minc == maxc:
                    h = 0.0
                    s = 0.0
                if _l <= 0.5:
                    s = (maxc - minc) / (maxc + minc)
                else:
                    s = (maxc - minc) / (2.0 - maxc - minc)
                if argmax[i, j] == 2:
                    h = 60 * (g - b) / (maxc - minc)
                elif argmax[i, j] == 1:
                    h = 60 * (2.0 + (b - r) / (maxc - minc))
                else:
                    h = 60 * (4.0 + (r - g) / (maxc - minc))
                if h < 0:
                    h += 360
                computed_hls[i, j, :] = [h, _l, s]
        assert_array_almost_equal(out_img, computed_hls, decimal=2)

254
255
    def test_imresize(self):
        resized_img = mmcv.imresize(self.img, (1000, 600))
256
        assert resized_img.shape == (600, 1000, 3)
257
258
        resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600),
                                                      True)
259
260
261
        assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5
                and h_scale == 2.0)
        for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
262
263
            resized_img = mmcv.imresize(
                self.img, (1000, 600), interpolation=mode)
264
265
            assert resized_img.shape == (600, 1000, 3)

266
    def test_imresize_like(self):
267
        a = np.zeros((100, 200, 3))
268
        resized_img = mmcv.imresize_like(self.img, a)
269
270
        assert resized_img.shape == (100, 200, 3)

271
272
273
    def test_imrescale(self):
        # rescale by a certain factor
        resized_img = mmcv.imrescale(self.img, 1.5)
274
        assert resized_img.shape == (450, 600, 3)
275
        resized_img = mmcv.imrescale(self.img, 0.934)
276
277
        assert resized_img.shape == (280, 374, 3)

278
        # rescale by a certain max_size
279
        # resize (400, 300) to (max_1000, max_600)
280
        resized_img = mmcv.imrescale(self.img, (1000, 600))
281
        assert resized_img.shape == (600, 800, 3)
282
283
        resized_img, scale = mmcv.imrescale(
            self.img, (1000, 600), return_scale=True)
284
285
        assert resized_img.shape == (600, 800, 3) and scale == 2.0
        # resize (400, 300) to (max_200, max_180)
286
        resized_img = mmcv.imrescale(self.img, (180, 200))
287
        assert resized_img.shape == (150, 200, 3)
288
289
        resized_img, scale = mmcv.imrescale(
            self.img, (180, 200), return_scale=True)
290
        assert resized_img.shape == (150, 200, 3) and scale == 0.5
291
292

        # test exceptions
293
        with pytest.raises(ValueError):
294
295
296
            mmcv.imrescale(self.img, -0.5)
        with pytest.raises(TypeError):
            mmcv.imrescale(self.img, [100, 100])
297

Kai Chen's avatar
Kai Chen committed
298
    def test_imflip(self):
Kai Chen's avatar
Kai Chen committed
299
        # test horizontal flip (color image)
Kai Chen's avatar
Kai Chen committed
300
301
        img = np.random.rand(80, 60, 3)
        h, w, c = img.shape
Kai Chen's avatar
Kai Chen committed
302
303
        flipped_img = mmcv.imflip(img)
        assert flipped_img.shape == img.shape
Kai Chen's avatar
Kai Chen committed
304
305
306
        for i in range(h):
            for j in range(w):
                for k in range(c):
Kai Chen's avatar
Kai Chen committed
307
308
309
310
                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
        # test vertical flip (color image)
        flipped_img = mmcv.imflip(img, direction='vertical')
        assert flipped_img.shape == img.shape
Kai Chen's avatar
Kai Chen committed
311
312
313
        for i in range(h):
            for j in range(w):
                for k in range(c):
Kai Chen's avatar
Kai Chen committed
314
315
                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
        # test horizontal flip (grayscale image)
Kai Chen's avatar
Kai Chen committed
316
        img = np.random.rand(80, 60)
Kai Chen's avatar
Kai Chen committed
317
318
319
        h, w = img.shape
        flipped_img = mmcv.imflip(img)
        assert flipped_img.shape == img.shape
Kai Chen's avatar
Kai Chen committed
320
321
        for i in range(h):
            for j in range(w):
Kai Chen's avatar
Kai Chen committed
322
323
324
325
                assert flipped_img[i, j] == img[i, w - 1 - j]
        # test vertical flip (grayscale image)
        flipped_img = mmcv.imflip(img, direction='vertical')
        assert flipped_img.shape == img.shape
Kai Chen's avatar
Kai Chen committed
326
327
        for i in range(h):
            for j in range(w):
Kai Chen's avatar
Kai Chen committed
328
                assert flipped_img[i, j] == img[h - 1 - i, j]
Kai Chen's avatar
Kai Chen committed
329

Joanna's avatar
Joanna committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    def test_imflip_(self):
        # test horizontal flip (color image)
        img = np.random.rand(80, 60, 3)
        h, w, c = img.shape
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip)
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]

        # test vertical flip (color image)
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                for k in range(c):
                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]

        # test horizontal flip (grayscale image)
        img = np.random.rand(80, 60)
        h, w = img.shape
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip)
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[i, w - 1 - j]
                assert flipped_img[i, j] == img_for_flip[i, j]

        # test vertical flip (grayscale image)
        img_for_flip = img.copy()
        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
        assert flipped_img.shape == img.shape
        assert flipped_img.shape == img_for_flip.shape
        assert id(flipped_img) == id(img_for_flip)
        for i in range(h):
            for j in range(w):
                assert flipped_img[i, j] == img[h - 1 - i, j]
                assert flipped_img[i, j] == img_for_flip[i, j]

381
    def test_imcrop(self):
382
383
384
385
386
387
388
        # yapf: disable
        bboxes = np.array([[100, 100, 199, 199],  # center
                           [0, 0, 150, 100],  # left-top corner
                           [250, 200, 399, 299],  # right-bottom corner
                           [0, 100, 399, 199],  # wide
                           [150, 0, 299, 299]])  # tall
        # yapf: enable
389

390
        # crop one bbox
391
392
        patch = mmcv.imcrop(self.img, bboxes[0, :])
        patches = mmcv.imcrop(self.img, bboxes[[0], :])
393
394
395
396
397
398
        assert patch.shape == (100, 100, 3)
        patch_path = osp.join(osp.dirname(__file__), 'data/patches')
        ref_patch = np.load(patch_path + '/0.npy')
        self.assert_img_equal(patch, ref_patch)
        assert isinstance(patches, list) and len(patches) == 1
        self.assert_img_equal(patches[0], ref_patch)
399

400
        # crop with no scaling and padding
401
        patches = mmcv.imcrop(self.img, bboxes)
402
403
404
405
        assert len(patches) == bboxes.shape[0]
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/{}.npy'.format(i))
            self.assert_img_equal(patches[i], ref_patch)
406

407
        # crop with scaling and no padding
408
        patches = mmcv.imcrop(self.img, bboxes, 1.2)
409
410
411
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/scale_{}.npy'.format(i))
            self.assert_img_equal(patches[i], ref_patch)
412

413
        # crop with scaling and padding
414
        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0])
415
416
417
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/pad_{}.npy'.format(i))
            self.assert_img_equal(patches[i], ref_patch)
418
        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0)
419
420
421
422
        for i in range(len(patches)):
            ref_patch = np.load(patch_path + '/pad0_{}.npy'.format(i))
            self.assert_img_equal(patches[i], ref_patch)

423
    def test_impad(self):
424
425
426
427
428
429
430
431
432
433
        # grayscale image
        img = np.random.rand(10, 10).astype(np.float32)
        padded_img = mmcv.impad(img, (15, 12), 0)
        assert_array_equal(img, padded_img[:10, :10])
        assert_array_equal(
            np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
        assert_array_equal(
            np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])

        # RGB image
434
        img = np.random.rand(10, 10, 3).astype(np.float32)
435
        padded_img = mmcv.impad(img, (15, 12), 0)
436
437
438
439
440
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
        assert_array_equal(
            np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])
441

442
        img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
443
        padded_img = mmcv.impad(img, (15, 12, 3), [100, 110, 120])
444
445
446
447
448
449
450
        assert_array_equal(img, padded_img[:10, :10, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
        assert_array_equal(
            np.array([100, 110, 120], dtype='uint8') * np.ones(
                (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])
451

452
        with pytest.raises(AssertionError):
453
            mmcv.impad(img, (15, ), 0)
454
        with pytest.raises(AssertionError):
455
            mmcv.impad(img, (5, 5), 0)
456
        with pytest.raises(AssertionError):
457
            mmcv.impad(img, (5, 5), [0, 1])
458

Kai Chen's avatar
Kai Chen committed
459
460
461
462
463
464
465
466
467
468
469
    def test_impad_to_multiple(self):
        img = np.random.rand(11, 14, 3).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 4)
        assert padded_img.shape == (12, 16, 3)
        img = np.random.rand(20, 12).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 5)
        assert padded_img.shape == (20, 15)
        img = np.random.rand(20, 12).astype(np.float32)
        padded_img = mmcv.impad_to_multiple(img, 2)
        assert padded_img.shape == (20, 12)

470
    def test_imrotate(self):
471
        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
472
        assert_array_equal(mmcv.imrotate(img, 0), img)
473
        img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]])
474
        assert_array_equal(mmcv.imrotate(img, 90), img_r)
475
        img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]])
476
        assert_array_equal(mmcv.imrotate(img, -90), img_r)
477
478
479

        img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8)
        img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]])
480
        assert_array_equal(mmcv.imrotate(img, 90), img_r)
481
        img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]])
482
        assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r)
483
        img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]])
484
        assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r)
485
        img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]])
486
487
488
489
        assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r)

        with pytest.raises(ValueError):
            mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True)
Yue Zhao's avatar
Yue Zhao committed
490
491
492
493
494
495
496

    def test_iminvert(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[255, 127, 0], [254, 128, 1], [253, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.iminvert(img), img_r)
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

    def test_solarize(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[0, 127, 0], [1, 127, 1], [2, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.solarize(img), img_r)
        img_r = np.array([[0, 127, 0], [1, 128, 1], [2, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.solarize(img, 100), img_r)

    def test_posterize(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[0, 128, 128], [0, 0, 128], [0, 128, 128]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.posterize(img, 1), img_r)
        img_r = np.array([[0, 128, 224], [0, 96, 224], [0, 128, 224]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.posterize(img, 3), img_r)