1. 18 Feb, 2022 2 commits
  2. 16 Feb, 2022 1 commit
  3. 15 Feb, 2022 7 commits
  4. 14 Feb, 2022 8 commits
  5. 11 Feb, 2022 2 commits
  6. 10 Feb, 2022 2 commits
  7. 09 Feb, 2022 1 commit
  8. 26 Jan, 2022 1 commit
  9. 22 Jan, 2022 1 commit
  10. 12 Jan, 2022 1 commit
  11. 19 Aug, 2021 1 commit
  12. 11 Aug, 2021 1 commit
  13. 30 Jul, 2021 1 commit
    • Deepak Narayanan's avatar
      Support for pipeline parallelism in T5 model · 46c74b4c
      Deepak Narayanan authored
      - Accumulate encoder hidden state gradient to handle skip connection
      - Correctly compute the number of layers in encoder / decoder for T5 model
      - Ensure e weights are initialized the same way in embeddings
      - Synchronize embedding gradients across encoder and decoder for T5 model
      - Support for checkpoint loading and saving
      46c74b4c
  14. 16 Jul, 2021 1 commit
  15. 12 Jul, 2021 1 commit
  16. 09 Jul, 2021 1 commit
  17. 19 Mar, 2021 1 commit
  18. 08 Mar, 2021 1 commit
  19. 04 Mar, 2021 3 commits
  20. 23 Feb, 2021 1 commit
  21. 09 Feb, 2021 1 commit
    • Deepak Narayanan's avatar
      Interleaved pipeline execution and code refactoring · dd889062
      Deepak Narayanan authored
      - Split a model's computation into multiple virtual stages as needed,
      and schedule communication correctly between these virtual stages
      - Move schedule code into `schedules.py` and communication code into
      `p2p_communication.py`
      - Use hyphens instead of spaces in all time logging for consistency
      - Factor out code in megatron/training.py into helper functions
      - Refactor evaluate() function: make it use forward_backward_schedule
      functions
      dd889062
  22. 26 Jan, 2021 1 commit