realm_dataset.py 4.72 KB
Newer Older
1
import itertools
2
import random
3

Neel Kant's avatar
Neel Kant committed
4
import numpy as np
5
from torch.utils.data import Dataset
Neel Kant's avatar
Neel Kant committed
6

7
from megatron import get_tokenizer
Neel Kant's avatar
Neel Kant committed
8
from megatron.data.realm_dataset_utils import get_block_samples_mapping, join_str_list
9

10

11
class ICTDataset(Dataset):
12
13
14
    """Dataset containing sentences and their blocks for an inverse cloze task."""
    def __init__(self, name, block_dataset, title_dataset, data_prefix,
                 num_epochs, max_num_samples, max_seq_length,
Neel Kant's avatar
Neel Kant committed
15
                 query_in_block_prob, short_seq_prob, seed, use_titles=True):
16
17
18
        self.name = name
        self.seed = seed
        self.max_seq_length = max_seq_length
Neel Kant's avatar
Neel Kant committed
19
        self.query_in_block_prob = query_in_block_prob
20
21
22
23
        self.block_dataset = block_dataset
        self.title_dataset = title_dataset
        self.short_seq_prob = short_seq_prob
        self.rng = random.Random(self.seed)
24
        self.use_titles = use_titles
25

26
27
28
        self.samples_mapping = get_block_samples_mapping(
            block_dataset, title_dataset, data_prefix, num_epochs,
            max_num_samples, max_seq_length, seed, name)
29
30
31
32
33
34
35
36
37
38
39
40
        self.tokenizer = get_tokenizer()
        self.vocab_id_list = list(self.tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_list = self.tokenizer.inv_vocab
        self.cls_id = self.tokenizer.cls
        self.sep_id = self.tokenizer.sep
        self.mask_id = self.tokenizer.mask
        self.pad_id = self.tokenizer.pad

    def __len__(self):
        return self.samples_mapping.shape[0]

    def __getitem__(self, idx):
41
        """Get an ICT example of a pseudo-query and the block of text from which it was extracted"""
42
        start_idx, end_idx, doc_idx, block_idx = self.samples_mapping[idx]
43
44
45
46
47
48
        if self.use_titles:
            title = list(self.title_dataset[int(doc_idx)])
            title_pad_offset = 3 + len(title)
        else:
            title = None
            title_pad_offset = 2
49
50
51
        block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)]
        assert len(block) > 1

52
        rand_sent_idx = self.rng.randint(0, len(block) - 1)
53

54
        # keep the query in the context query_in_block_prob fraction of the time.
Neel Kant's avatar
Neel Kant committed
55
        if self.rng.random() < self.query_in_block_prob:
56
57
58
59
60
61
62
            query = block[rand_sent_idx].copy()
        else:
            query = block.pop(rand_sent_idx)

        # still need to truncate because blocks are concluded when
        # the sentence lengths have exceeded max_seq_length.
        query = query[:self.max_seq_length - 2]
63
        block = list(itertools.chain(*block))[:self.max_seq_length - title_pad_offset]
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

        query_tokens, query_pad_mask = self.concat_and_pad_tokens(query)
        block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)

        sample = {
            'query_tokens': np.array(query_tokens),
            'query_pad_mask': np.array(query_pad_mask),
            'block_tokens': np.array(block_tokens),
            'block_pad_mask': np.array(block_pad_mask),
            'block_data': np.array([start_idx, end_idx, doc_idx, block_idx]).astype(np.int64)
        }

        return sample

    def encode_text(self, text):
        return self.tokenizer.tokenize(text)

81
82
    def decode_tokens(self, token_ids):
        """Utility function to help with debugging mostly"""
83
        tokens = self.tokenizer.tokenizer.convert_ids_to_tokens(token_ids)
Neel Kant's avatar
Neel Kant committed
84
85
86
        exclude_list = ['[PAD]', '[CLS]']
        non_pads = [t for t in tokens if t not in exclude_list]
        joined_strs = join_str_list(non_pads)
87
88
89
90
91
92
93
94
95
96

    def get_block(self, start_idx, end_idx, doc_idx):
        """Get the IDs for an evidence block plus the title of the corresponding document"""
        block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)]
        title = list(self.title_dataset[int(doc_idx)])

        block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))]
        block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)

        return (block_tokens, block_pad_mask)
97
98

    def get_null_block(self):
99
        """Get empty block and title - used in REALM pretraining"""
100
101
102
103
        block, title = [], []
        block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)

        return (block_tokens, block_pad_mask)
104
105

    def concat_and_pad_tokens(self, tokens, title=None):
106
        """Concat with special tokens and pad sequence to self.max_seq_length"""
107
108
109
110
        if title is None:
            tokens = [self.cls_id] + tokens + [self.sep_id]
        else:
            tokens = [self.cls_id] + title + [self.sep_id] + tokens + [self.sep_id]
111
112
113
114
115
116
        assert len(tokens) <= self.max_seq_length, len(tokens)

        num_pad = self.max_seq_length - len(tokens)
        pad_mask = [1] * len(tokens) + [0] * num_pad
        tokens += [self.pad_id] * num_pad
        return tokens, pad_mask