realm_dataset.py 9.97 KB
Newer Older
1
import itertools
2
3
4
import os
import random
import time
5

Neel Kant's avatar
Neel Kant committed
6
import numpy as np
Neel Kant's avatar
Neel Kant committed
7
import spacy
8
9
import torch
from torch.utils.data import Dataset
Neel Kant's avatar
Neel Kant committed
10

11
12
from megatron import get_tokenizer, print_rank_0, mpu
from megatron.data.bert_dataset import BertDataset
13
from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy
Neel Kant's avatar
Neel Kant committed
14

15
#qa_nlp = spacy.load('en_core_web_lg')
16

17
18

class RealmDataset(BertDataset):
Neel Kant's avatar
Neel Kant committed
19
20
21
22
23
24
25
26
27
    """Dataset containing simple masked sentences for masked language modeling.

    The dataset should yield sentences just like the regular BertDataset
    However, this dataset also needs to be able to return a set of blocks
    given their start and end indices.

    Presumably

    """
Neel Kant's avatar
Neel Kant committed
28
29
30
    def __init__(self, name, indexed_dataset, data_prefix,
                 num_epochs, max_num_samples, masked_lm_prob,
                 max_seq_length, short_seq_prob, seed):
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        super(RealmDataset, self).__init__(name, indexed_dataset, data_prefix,
                                           num_epochs, max_num_samples, masked_lm_prob,
                                           max_seq_length, short_seq_prob, seed)
        self.build_sample_fn = build_simple_training_sample


def build_simple_training_sample(sample, target_seq_length, max_seq_length,
                                 vocab_id_list, vocab_id_to_token_dict,
                                 cls_id, sep_id, mask_id, pad_id,
                                 masked_lm_prob, np_rng):

    tokens = list(itertools.chain(*sample))[:max_seq_length - 2]
    tokens, tokentypes = create_single_tokens_and_tokentypes(tokens, cls_id, sep_id)

    max_predictions_per_seq = masked_lm_prob * max_seq_length
    (tokens, masked_positions, masked_labels, _) = create_masked_lm_predictions(
        tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob,
        cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng)

    tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np \
        = pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                                   masked_labels, pad_id, max_seq_length)

    train_sample = {
        'tokens': tokens_np,
        'labels': labels_np,
        'loss_mask': loss_mask_np,
        'pad_mask': padding_mask_np
    }
    return train_sample

Neel Kant's avatar
Neel Kant committed
62

63
64
65
66
67
68
69
def create_single_tokens_and_tokentypes(_tokens, cls_id, sep_id):
    tokens = []
    tokens.append(cls_id)
    tokens.extend(list(_tokens))
    tokens.append(sep_id)
    tokentypes = [0] * len(tokens)
    return tokens, tokentypes
Neel Kant's avatar
Neel Kant committed
70

Neel Kant's avatar
Neel Kant committed
71
72
73
74
75
76
77
78
79
80
81

def spacy_ner(block_text):
    candidates = {}
    block = qa_nlp(block_text)
    starts = []
    answers = []
    for ent in block.ents:
        starts.append(int(ent.start_char))
        answers.append(str(ent.text))
    candidates['starts'] = starts
    candidates['answers'] = answers
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248


class InverseClozeDataset(Dataset):
    """Dataset containing sentences and their blocks for an inverse cloze task."""
    def __init__(self, name, block_dataset, title_dataset, data_prefix,
                 num_epochs, max_num_samples, max_seq_length,
                 short_seq_prob, seed):
        self.name = name
        self.seed = seed
        self.max_seq_length = max_seq_length
        self.block_dataset = block_dataset
        self.title_dataset = title_dataset
        self.short_seq_prob = short_seq_prob
        self.rng = random.Random(self.seed)

        self.samples_mapping = self.get_samples_mapping(
            data_prefix, num_epochs, max_num_samples)
        self.tokenizer = get_tokenizer()
        self.vocab_id_list = list(self.tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_list = self.tokenizer.inv_vocab
        self.cls_id = self.tokenizer.cls
        self.sep_id = self.tokenizer.sep
        self.mask_id = self.tokenizer.mask
        self.pad_id = self.tokenizer.pad

    def __len__(self):
        return self.samples_mapping.shape[0]

    def __getitem__(self, idx):
        start_idx, end_idx, doc_idx, block_idx = self.samples_mapping[idx]
        title = list(self.title_dataset[int(doc_idx)])
        block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)]
        assert len(block) > 1

        # avoid selecting the first or last sentence to be the query.
        if len(block) == 2:
            rand_sent_idx = int(self.rng.random() > 0.5)
        else:
            rand_sent_idx = self.rng.randint(1, len(block) - 2)

        # keep the query in the context 10% of the time.
        if self.rng.random() < 1:
            query = block[rand_sent_idx].copy()
        else:
            query = block.pop(rand_sent_idx)

        # still need to truncate because blocks are concluded when
        # the sentence lengths have exceeded max_seq_length.
        query = query[:self.max_seq_length - 2]
        block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))]

        query_tokens, query_pad_mask = self.concat_and_pad_tokens(query)
        block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)

        sample = {
            'query_tokens': np.array(query_tokens),
            'query_pad_mask': np.array(query_pad_mask),
            'block_tokens': np.array(block_tokens),
            'block_pad_mask': np.array(block_pad_mask),
            'block_data': np.array([start_idx, end_idx, doc_idx, block_idx]).astype(np.int64)
        }

        return sample

    def encode_text(self, text):
        return self.tokenizer.tokenize(text)

    def decode_tokens(self, token_ids):
        tokens = self.tokenizer.tokenizer.convert_ids_to_tokens(token_ids)
        return ' '.join(token for token in tokens if token != '[PAD]')

    def get_block(self, start_idx, end_idx, doc_idx):
        """Get the IDs for an evidence block plus the title of the corresponding document"""
        block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)]
        title = list(self.title_dataset[int(doc_idx)])

        block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))]
        block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)

        return (block_tokens, block_pad_mask)

    def concat_and_pad_tokens(self, tokens, title=None):
        """concat with special tokens and pad sequence to self.max_seq_length"""
        tokens = [self.cls_id] + tokens + [self.sep_id]
        if title is not None:
            tokens += title + [self.sep_id]
        assert len(tokens) <= self.max_seq_length, len(tokens)

        num_pad = self.max_seq_length - len(tokens)
        pad_mask = [1] * len(tokens) + [0] * num_pad
        tokens += [self.pad_id] * num_pad
        return tokens, pad_mask

    def get_samples_mapping(self, data_prefix, num_epochs, max_num_samples):
        if not num_epochs:
            if not max_num_samples:
                raise ValueError("Need to specify either max_num_samples "
                                 "or num_epochs")
            num_epochs = np.iinfo(np.int32).max - 1
        if not max_num_samples:
            max_num_samples = np.iinfo(np.int64).max - 1

        # Filename of the index mapping
        indexmap_filename = data_prefix
        indexmap_filename += '_{}_indexmap'.format(self.name)
        if num_epochs != (np.iinfo(np.int32).max - 1):
            indexmap_filename += '_{}ep'.format(num_epochs)
        if max_num_samples != (np.iinfo(np.int64).max - 1):
            indexmap_filename += '_{}mns'.format(max_num_samples)
        indexmap_filename += '_{}msl'.format(self.max_seq_length)
        indexmap_filename += '_{}s'.format(self.seed)
        indexmap_filename += '.npy'

        # Build the indexed mapping if not exist.
        if torch.distributed.get_rank() == 0 and \
                not os.path.isfile(indexmap_filename):
            print(' > WARNING: could not find index map file {}, building '
                  'the indices on rank 0 ...'.format(indexmap_filename))

            # Make sure the types match the helpers input types.
            assert self.block_dataset.doc_idx.dtype == np.int64
            assert self.block_dataset.sizes.dtype == np.int32

            # Build samples mapping
            verbose = torch.distributed.get_rank() == 0
            start_time = time.time()
            print_rank_0(' > building samples index mapping for {} ...'.format(
                self.name))
            from megatron.data.dataset_utils import compile_helper
            compile_helper()
            from megatron.data import helpers
            samples_mapping = helpers.build_blocks_mapping(
                self.block_dataset.doc_idx,
                self.block_dataset.sizes,
                self.title_dataset.sizes,
                num_epochs,
                max_num_samples,
                self.max_seq_length-3,  # account for added tokens
                self.seed,
                verbose)
            print_rank_0(' > done building samples index mapping')
            np.save(indexmap_filename, samples_mapping, allow_pickle=True)
            print_rank_0(' > saved the index mapping in {}'.format(
                indexmap_filename))
            # Make sure all the ranks have built the mapping
            print_rank_0(' > elapsed time to build and save samples mapping '
                         '(seconds): {:4f}'.format(
                time.time() - start_time))
        # This should be a barrier but nccl barrier assumes
        # device_index=rank which is not the case for model
        # parallel case
        counts = torch.cuda.LongTensor([1])
        torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
        assert counts[0].item() == torch.distributed.get_world_size(
            group=mpu.get_data_parallel_group())

        # Load indexed dataset.
        print_rank_0(' > loading indexed mapping from {}'.format(
            indexmap_filename))
        start_time = time.time()
        samples_mapping = np.load(indexmap_filename, allow_pickle=True)
        print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
            time.time() - start_time))
        print_rank_0('    total number of samples: {}'.format(
            samples_mapping.shape[0]))

        return samples_mapping