pretrain_ict.py 6.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT for Inverse Cloze Task"""
Mostofa Patwary's avatar
Mostofa Patwary committed
17
import math
18
19

import torch
Neel Kant's avatar
Neel Kant committed
20
import torch.distributed as dist
21
22
import torch.nn.functional as F

Neel Kant's avatar
Neel Kant committed
23
24
from megatron import get_args
from megatron import print_rank_0
25
from megatron import get_timers
26
from megatron import mpu
27
from megatron.data.biencoder_dataset_utils import get_ict_batch
28
from megatron.data.dataset_utils import build_train_valid_test_datasets
29
from megatron.model.biencoder_model import biencoder_model_provider
30
from megatron.training import pretrain
31
from megatron.utils import average_losses_across_data_parallel_group
32
33


Neel Kant's avatar
Neel Kant committed
34
def pretrain_ict_model_provider():
35
    args = get_args()
Mostofa Patwary's avatar
Mostofa Patwary committed
36
37
38
    model = biencoder_model_provider(
                only_context_model=False,
                only_query_model=False,
Mostofa Patwary's avatar
Mostofa Patwary committed
39
                shared_query_context_model=args.shared_query_context_model)
Mostofa Patwary's avatar
Mostofa Patwary committed
40
    return model
41

mohammad's avatar
mohammad committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def get_group_world_size_rank():

    group = mpu.get_data_parallel_group()
    rank = torch.distributed.get_rank(group=group)
    world_size = torch.distributed.get_world_size(group=group)

    return group, rank, world_size


class AllgatherFromDataParallelRegion(torch.autograd.Function):

    @staticmethod
    def forward(ctx, input_):
        assert input_.dim() == 2
        group, rank, world_size = get_group_world_size_rank()

        tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
        tensor_list[rank] = input_
        torch.distributed.all_gather(tensor_list, input_, group=group)

        output = torch.cat(tensor_list, dim=0).contiguous()

        return output


    @staticmethod
    def backward(ctx, grad_output):
        group, rank, world_size = get_group_world_size_rank()

71
72
73
        assert grad_output.shape[0] % world_size == 0
        dim_size = grad_output.shape[0] // world_size
        output_list = torch.split(grad_output, dim_size, dim=0)
mohammad's avatar
mohammad committed
74

75
76
        # get chunk from this rank
        output = output_list[rank].contiguous()
mohammad's avatar
mohammad committed
77
78
        return output

79
def forward_step(data_iterator, model, input_tensor):
80
    """Forward step."""
Neel Kant's avatar
Neel Kant committed
81
    args = get_args()
82
    timers = get_timers()
83
84

    # Get the batch.
mohammad's avatar
mohammad committed
85
    timers('batch-generator').start()
Mostofa Patwary's avatar
Mostofa Patwary committed
86
87
    query_tokens, query_mask, \
    context_tokens, context_mask, context_indices = get_ict_batch(data_iterator)
mohammad's avatar
mohammad committed
88
    timers('batch-generator').stop()
89

Mostofa Patwary's avatar
Mostofa Patwary committed
90
91
92
    # Query and Context Types
    query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0)
    context_types = torch.cuda.LongTensor(*context_tokens.shape).fill_(0)
93

Mostofa Patwary's avatar
Mostofa Patwary committed
94
95
96
97
    # Forward model.
    query_logits, context_logits = model(query_tokens, query_mask,
                                    query_types, context_tokens,
                                    context_mask, context_types)
Neel Kant's avatar
Neel Kant committed
98

Mostofa Patwary's avatar
Mostofa Patwary committed
99
100
    micro_batch_size = query_logits.shape[0]
    # recall we assert that tensor_model_parallel_size == 1
101
102
103
    assert mpu.get_tensor_model_parallel_world_size() == 1, \
        "Model parallel size > 1 not supported for ICT"

104
105
    global_batch_size = dist.get_world_size() * micro_batch_size
    all_query_logits = AllgatherFromDataParallelRegion.apply(query_logits)
Mostofa Patwary's avatar
Mostofa Patwary committed
106
    all_context_logits = AllgatherFromDataParallelRegion.apply(context_logits) 
Mostofa Patwary's avatar
Mostofa Patwary committed
107
108
109
110
111
112
113
114
115
116
117

    # scores are inner products between query and context embeddings
    retrieval_scores = torch.matmul(all_query_logits,
                        torch.transpose(all_context_logits, 0, 1))
    # scaling the retriever scores
    if args.retriever_score_scaling:
        retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)

    softmax_scores = F.log_softmax(retrieval_scores, dim=1)
    sorted_vals, sorted_indices = torch.topk(softmax_scores,
                                    k=softmax_scores.shape[1], sorted=True)
118

119
    def topk_accuracy(k):
Mostofa Patwary's avatar
Mostofa Patwary committed
120
121
        return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) \
            for i in range(global_batch_size)]) / global_batch_size])
Neel Kant's avatar
Neel Kant committed
122

123
124
    topk_accs = [topk_accuracy(int(k)) for k in args.report_topk_accuracies]

Mostofa Patwary's avatar
Mostofa Patwary committed
125
126
127
128
129
130
    labels = torch.arange(global_batch_size).long().cuda()
    loss = F.nll_loss(softmax_scores, labels, reduction='mean')
    reduced_losses = average_losses_across_data_parallel_group([loss, *topk_accs])

    # Scale the retrieval loss
    loss = loss * mpu.get_data_parallel_world_size()
131

Mostofa Patwary's avatar
Mostofa Patwary committed
132
133
134
135
136
    # create stats_dict with retrieval loss and all specified top-k accuracies
    topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \
                        zip(args.report_topk_accuracies, reduced_losses[1:])}
    stats_dict = dict(loss=reduced_losses[0], **topk_acc_dict)
    return loss, stats_dict
137
138


Neel Kant's avatar
Neel Kant committed
139
140
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid and test datasets."""
141
    args = get_args()
Neel Kant's avatar
Neel Kant committed
142
    print_rank_0('> building train, validation, and test datasets '
Neel Kant's avatar
Neel Kant committed
143
                 'for BERT ICT...')
144

Neel Kant's avatar
Neel Kant committed
145
146
147
148
149
150
151
152
153
154
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup),
Mostofa Patwary's avatar
Mostofa Patwary committed
155
        binary_head=False,
156
        dataset_type='ict')
Neel Kant's avatar
Neel Kant committed
157
    print_rank_0("> finished creating BERT ICT datasets ...")
158

Neel Kant's avatar
Neel Kant committed
159
    return train_ds, valid_ds, test_ds
160
161
162


if __name__ == "__main__":
Mostofa Patwary's avatar
Mostofa Patwary committed
163
164
165
    pretrain(train_valid_test_datasets_provider,
             pretrain_ict_model_provider,
             forward_step,
166
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})