helpers.cpp 13.5 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
 coding=utf-8
 Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
 */


19
/* Helper methods for fast index mapping builds */
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
20
21
22
23
24

#include <algorithm>
#include <iostream>
#include <limits>
#include <math.h>
25
#include <stdexcept>
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
26
27
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
28
#include <random>
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
29
30
31
32

namespace py = pybind11;
using namespace std;

33
const int32_t LONG_SENTENCE_LEN = 512;
34

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
35

Mohammad's avatar
Mohammad committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
py::array build_sample_idx(const py::array_t<int32_t>& sizes_,
			   const py::array_t<int32_t>& doc_idx_,
			   const int32_t seq_length,
			   const int32_t num_epochs,
			   const int64_t tokens_per_epoch) {
    /* Sample index mapping is a 2D array with sizes [number-of-samples + 1, 2]
       where [..., 0] contains the index into `doc_idx` and [..., 0] is the
       starting offset in that document.*/

    // Consistency checks.
    assert(seq_length > 1);
    assert(num_epochs > 0);
    assert(tokens_per_epoch > 1);

    // Remove bound checks.
    auto sizes = sizes_.unchecked<1>();
    auto doc_idx = doc_idx_.unchecked<1>();

    // Mapping and it's length (1D).
    int64_t num_samples = (num_epochs * tokens_per_epoch - 1) / seq_length;
    int32_t* sample_idx = new int32_t[2*(num_samples+1)];

    cout << "    using:" << endl << std::flush;
    cout << "     number of documents:       " <<
      doc_idx_.shape(0) / num_epochs << endl << std::flush;
    cout << "     number of epochs:          " << num_epochs <<
      endl << std::flush;
    cout << "     sequence length:           " << seq_length <<
      endl << std::flush;
    cout << "     total number of samples:   " << num_samples <<
      endl << std::flush;

    // Index into sample_idx.
    int64_t sample_index = 0;
    // Index into doc_idx.
    int64_t doc_idx_index = 0;
    // Begining offset for each document.
    int32_t doc_offset = 0;
    // Start with first document and no offset.
    sample_idx[2 * sample_index] = doc_idx_index;
    sample_idx[2 * sample_index + 1] = doc_offset;
    ++sample_index;

    while (sample_index <= num_samples) {
        // Start with a fresh sequence.
      int32_t remaining_seq_length = seq_length + 1;
      while (remaining_seq_length != 0) {
            // Get the document length.
	auto doc_id = doc_idx[doc_idx_index];
	auto doc_length = sizes[doc_id] - doc_offset;
	// And add it to the current sequence.
	remaining_seq_length -= doc_length;
	// If we have more than a full sequence, adjust offset and set
	// remaining length to zero so we return from the while loop.
	// Note that -1 here is for the same reason we have -1 in
	// `_num_epochs` calculations.
	if (remaining_seq_length <= 0) {
	  doc_offset += (remaining_seq_length + doc_length - 1);
	  remaining_seq_length = 0;
	} else {
	  // Otherwise, start from the begining of the next document.
	  ++doc_idx_index;
	  doc_offset = 0;
	}
      }
      // Record the sequence.
      sample_idx[2 * sample_index] = doc_idx_index;
      sample_idx[2 * sample_index + 1] = doc_offset;
      ++sample_index;
    }

    // Method to deallocate memory.
    py::capsule free_when_done(sample_idx, [](void *mem_) {
	int32_t *mem = reinterpret_cast<int32_t*>(mem_);
	delete[] mem;
      });

    // Return the numpy array.
    const auto byte_size = sizeof(int32_t);
    return py::array(std::vector<int64_t>{num_samples+1, 2}, // shape
                     {2*byte_size, byte_size}, // C-style contiguous strides
                     sample_idx, // the data pointer
                     free_when_done); // numpy array references
    
}


123
124
125
inline int32_t get_target_sample_len(const int32_t short_seq_ratio,
				     const int32_t max_length,
				     std::mt19937& rand32_gen) {
126
    /* Training sample length. */
127
    const auto random_number = rand32_gen();
128
    if ((random_number % short_seq_ratio) == 0) {
129
      return 2 + random_number % (max_length - 1);
130
131
    }
    return max_length;
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
132
133
}

134

135
template<typename DocIdx>
136
137
138
py::array build_mapping_impl(const py::array_t<int64_t>& docs_,
                             const py::array_t<int32_t>& sizes_,
                             const int32_t num_epochs,
139
                             const uint64_t max_num_samples,
140
                             const int32_t max_seq_length,
141
                             const double short_seq_prob,
142
143
144
145
146
147
148
149
150
151
152
153
154
                             const int32_t seed,
			     const bool verbose) {
    /* Build a mapping of (start-index, end-index, sequence-length) where
       start and end index are the indices of the sentences in the sample
       and sequence-length is the target sequence length.
    */

    // Consistency checks.
    assert(num_epochs > 0);
    assert(max_seq_length > 1);
    assert(short_seq_prob > 0.0);
    assert(short_seq_prob <= 1.0);
    assert(seed > 0);
155
156
157
158

    // Remove bound checks.
    auto docs = docs_.unchecked<1>();
    auto sizes = sizes_.unchecked<1>();
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    // For efficiency, convert probability to ratio. Note: rand() generates int.
    const auto short_seq_ratio = static_cast<int32_t>(round(1.0 / short_seq_prob));

    if (verbose) {
        const auto sent_start_index = docs[0];
	const auto sent_end_index = docs[docs_.shape(0) - 1];
	const auto num_sentences = sent_end_index - sent_start_index;
	cout << "    using:" << endl << std::flush;
	cout << "     number of documents:            " << docs_.shape(0) - 1 <<
	  endl << std::flush;
	cout << "     sentences range:                [" << sent_start_index <<
	", " << sent_end_index << ")" << endl << std::flush;
	cout << "     total number of sentences:      " << num_sentences <<
	  endl << std::flush;
	cout << "     number of epochs:               " << num_epochs <<
	  endl << std::flush;
	cout << "     maximum number of samples:      " << max_num_samples <<
	  endl << std::flush;
	cout << "     maximum sequence length:        " << max_seq_length <<
	  endl << std::flush;
	cout << "     short sequence probability:     " << short_seq_prob <<
	endl << std::flush;
	cout << "     short sequence ration (1/prob): " << short_seq_ratio <<
	  endl << std::flush;
	cout << "     seed:                           " << seed << endl <<
	  std::flush;
186
    }
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
187

188
189
190
191
192
193
194
    // Mapping and it's length (1D).
    int64_t num_samples = -1;
    DocIdx* maps = NULL;

    // Perform two iterations, in the first iteration get the size
    // and allocate memory and in the second iteration populate the map.
    bool second = false;
195
    for (int32_t iteration=0; iteration<2; ++iteration) {
196
197

        // Set the seed so both iterations produce the same results.
198
        std::mt19937 rand32_gen(seed);
199
200

        // Set the flag on second iteration.
201
        second = (iteration == 1);
202
203

        // Counters:
204
205
        uint64_t empty_docs = 0;
        uint64_t one_sent_docs = 0;
206
	uint64_t long_sent_docs = 0;
207
208
209
210
211

        // Current map index.
        uint64_t map_index = 0;

        // For each epoch:
212
213
214
        for (int32_t epoch=0; epoch<num_epochs; ++epoch) {
            if (map_index >= max_num_samples) {
	        if (verbose && (!second)) {
215
		  cout << "    reached " << max_num_samples << " samples after "
216
217
		       << epoch << " epochs ..." << endl << std::flush;
		}
218
219
220
                break;
            }
            // For each document:
221
            for (int32_t doc=0; doc<(docs.shape(0) - 1); ++doc) {
222

223
                // Document sentences are in [sent_index_first, sent_index_last)
224
225
226
                const auto sent_index_first = docs[doc];
                const auto sent_index_last = docs[doc + 1];

227
228
                // At the begining of the document previous index is the
		// start index.
229
230
231
232
233
234
235
236
                auto prev_start_index = sent_index_first;

                // Remaining documents.
                auto num_remain_sent = sent_index_last - sent_index_first;

                // Some bookkeeping
                if ((epoch == 0) && (!second)) {
                    if (num_remain_sent == 0) {
237
		        ++empty_docs;
238
239
                    }
                    if (num_remain_sent == 1) {
240
		        ++one_sent_docs;
241
242
243
                    }
                }

244
		// Detect documents with long sentences.
245
246
247
248
249
250
251
252
253
254
255
256
257
258
		bool contains_long_sentence = false;
		if (num_remain_sent > 1) {
		    for (auto sent_index=sent_index_first;
			 sent_index < sent_index_last; ++sent_index) {
		        if (sizes[sent_index] > LONG_SENTENCE_LEN){
			    if ((epoch == 0) && (!second)) {
			        ++long_sent_docs;
			    }
			    contains_long_sentence = true;
			    break;
			}
		    }
		}

259
                // If we have more than two sentences.
260
                if ((num_remain_sent > 1) && (!contains_long_sentence)) {
261
262

                    // Set values.
263
264
265
266
267
                    auto seq_len = int32_t{0};
                    auto num_sent = int32_t{0};
                    auto target_seq_len = get_target_sample_len(short_seq_ratio,
								max_seq_length,
								rand32_gen);
268
269
270
271
272

                    // Loop through sentences.
                    for (auto sent_index=sent_index_first;
                         sent_index < sent_index_last; ++sent_index) {

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
		        // Add the size and number of sentences.
		        seq_len += sizes[sent_index];
		        ++num_sent;
			--num_remain_sent;

			// If we have reached the target length.
			// and if not only one sentence is left in the document.
			// and if we have at least two sentneces.
			// and if we have reached end of the document.
			if (((seq_len >= target_seq_len) &&
			     (num_remain_sent > 1) &&
			     (num_sent > 1) ) || (num_remain_sent == 0)) {

			    // Check for overflow.
			    if ((3 * map_index + 2) >
				std::numeric_limits<int64_t>::max()) {
			        cout << "number of samples exceeded maximum "
				     << "allowed by type int64: "
				     << std::numeric_limits<int64_t>::max()
				     << endl;
				throw std::overflow_error("Number of samples");
			    }

			    // Populate the map.
			    if (second) {
			        const auto map_index_0 = 3 * map_index;
				maps[map_index_0] = static_cast<DocIdx>(prev_start_index);
				maps[map_index_0 + 1] = static_cast<DocIdx>(sent_index + 1);
				maps[map_index_0 + 2] = static_cast<DocIdx>(target_seq_len);
			    }

			    // Update indices / counters.
			    ++map_index;
			    prev_start_index = sent_index + 1;
			    target_seq_len = get_target_sample_len(short_seq_ratio,
								   max_seq_length,
								   rand32_gen);
			    seq_len = 0;
			    num_sent = 0;
			}

                    } // for (auto sent_index=sent_index_first; ...
315
316
317
318
319
                } // if (num_remain_sent > 1) {
            } // for (int doc=0; doc < num_docs; ++doc) {
        } // for (int epoch=0; epoch < num_epochs; ++epoch) {

        if (!second) {
320
	    if (verbose) {
321
	        cout << "   number of empty documents: " << empty_docs <<
322
		  endl << std::flush;
323
		cout << "   number of documents with one sentence: " <<
324
		  one_sent_docs << endl << std::flush;
325
326
		cout << "   number of documents with long sentences: " <<
		  long_sent_docs << endl << std::flush;
327
		cout << "   will create mapping for " << map_index <<
328
329
330
331
		  " samples" << endl << std::flush;
	    }
	    assert(maps == NULL);
	    assert(num_samples < 0);
332
            maps = new DocIdx[3*map_index];
333
            num_samples = static_cast<int64_t>(map_index);
334
335
336
337
338
        }

    } // for (int iteration=0; iteration < 2; ++iteration) {

    // Shuffle.
339
340
341
    // We need a 64 bit random number generator as we might have more
    // than 2 billion samples.
    std::mt19937_64 rand64_gen(seed + 1);
342
    for (auto i=(num_samples - 1); i > 0; --i) {
343
344
345
346
347
348
349
      const auto j = static_cast<int64_t>(rand64_gen() % (i + 1));
      const auto i0 = 3 * i;
      const auto j0 = 3 * j;
      // Swap values.
      swap(maps[i0], maps[j0]);
      swap(maps[i0 + 1], maps[j0 + 1]);
      swap(maps[i0 + 2], maps[j0 + 2]);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
350
351
    }

352
353
354
    // Method to deallocate memory.
    py::capsule free_when_done(maps, [](void *mem_) {
            DocIdx *mem = reinterpret_cast<DocIdx*>(mem_);
355
	    delete[] mem;
356
        });
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
357

358
    // Return the numpy array.
359
    const auto byte_size = sizeof(DocIdx);
360
    return py::array(std::vector<int64_t>{num_samples, 3}, // shape
361
                     {3*byte_size, byte_size}, // C-style contiguous strides
362
363
                     maps, // the data pointer
                     free_when_done); // numpy array references
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
364

365
}
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
366

367
368
369

py::array build_mapping(const py::array_t<int64_t>& docs_,
                        const py::array_t<int>& sizes_,
370
371
372
373
                        const int num_epochs,
                        const uint64_t max_num_samples,
                        const int max_seq_length,
                        const double short_seq_prob,
374
375
376
                        const int seed,
			const bool verbose) {

377
    if (sizes_.size() > std::numeric_limits<uint32_t>::max()) {
378
        if (verbose) {
379
380
381
	   cout << "    using uint64 for data mapping..." << endl << std::flush;
	}
	return build_mapping_impl<uint64_t>(docs_, sizes_, num_epochs,
382
383
					    max_num_samples, max_seq_length,
					    short_seq_prob, seed, verbose);
384
    } else {
385
386
387
388
389
390
       if (verbose) {
	   cout << "    using uint32 for data mapping..." << endl << std::flush;
       }
       return build_mapping_impl<uint32_t>(docs_, sizes_, num_epochs,
					   max_num_samples, max_seq_length,
					   short_seq_prob, seed, verbose);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
391
392
393
    }
}

394

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
395
PYBIND11_MODULE(helpers, m) {
396
    m.def("build_mapping", &build_mapping);
Mohammad's avatar
Mohammad committed
397
    m.def("build_sample_idx", &build_sample_idx);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
398
}