helpers.cpp 9.83 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
 coding=utf-8
 Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
 */


19
/* Helper methods for fast index mapping builds */
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
20
21
22
23
24

#include <algorithm>
#include <iostream>
#include <limits>
#include <math.h>
25
#include <stdexcept>
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
26
27
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
28
#include <random>
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
29
30
31
32
33

namespace py = pybind11;
using namespace std;


34
35
36
inline int32_t get_target_sample_len(const int32_t short_seq_ratio,
				     const int32_t max_length,
				     std::mt19937& rand32_gen) {
37
    /* Training sample length. */
38
    const auto random_number = rand32_gen();
39
    if ((random_number % short_seq_ratio) == 0) {
40
      return 2 + random_number % (max_length - 1);
41
42
    }
    return max_length;
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
43
44
}

45

46
template<typename DocIdx>
47
48
49
py::array build_mapping_impl(const py::array_t<int64_t>& docs_,
                             const py::array_t<int32_t>& sizes_,
                             const int32_t num_epochs,
50
                             const uint64_t max_num_samples,
51
                             const int32_t max_seq_length,
52
                             const double short_seq_prob,
53
54
55
56
57
58
59
60
61
62
63
64
65
                             const int32_t seed,
			     const bool verbose) {
    /* Build a mapping of (start-index, end-index, sequence-length) where
       start and end index are the indices of the sentences in the sample
       and sequence-length is the target sequence length.
    */

    // Consistency checks.
    assert(num_epochs > 0);
    assert(max_seq_length > 1);
    assert(short_seq_prob > 0.0);
    assert(short_seq_prob <= 1.0);
    assert(seed > 0);
66
67
68
69

    // Remove bound checks.
    auto docs = docs_.unchecked<1>();
    auto sizes = sizes_.unchecked<1>();
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

    // For efficiency, convert probability to ratio. Note: rand() generates int.
    const auto short_seq_ratio = static_cast<int32_t>(round(1.0 / short_seq_prob));

    if (verbose) {
        const auto sent_start_index = docs[0];
	const auto sent_end_index = docs[docs_.shape(0) - 1];
	const auto num_sentences = sent_end_index - sent_start_index;
	cout << "    using:" << endl << std::flush;
	cout << "     number of documents:            " << docs_.shape(0) - 1 <<
	  endl << std::flush;
	cout << "     sentences range:                [" << sent_start_index <<
	", " << sent_end_index << ")" << endl << std::flush;
	cout << "     total number of sentences:      " << num_sentences <<
	  endl << std::flush;
	cout << "     number of epochs:               " << num_epochs <<
	  endl << std::flush;
	cout << "     maximum number of samples:      " << max_num_samples <<
	  endl << std::flush;
	cout << "     maximum sequence length:        " << max_seq_length <<
	  endl << std::flush;
	cout << "     short sequence probability:     " << short_seq_prob <<
	endl << std::flush;
	cout << "     short sequence ration (1/prob): " << short_seq_ratio <<
	  endl << std::flush;
	cout << "     seed:                           " << seed << endl <<
	  std::flush;
97
    }
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
98

99
100
101
102
103
104
105
    // Mapping and it's length (1D).
    int64_t num_samples = -1;
    DocIdx* maps = NULL;

    // Perform two iterations, in the first iteration get the size
    // and allocate memory and in the second iteration populate the map.
    bool second = false;
106
    for (int32_t iteration=0; iteration<2; ++iteration) {
107
108

        // Set the seed so both iterations produce the same results.
109
        std::mt19937 rand32_gen(seed);
110
111

        // Set the flag on second iteration.
112
        second = (iteration == 1);
113
114

        // Counters:
115
116
        uint64_t empty_docs = 0;
        uint64_t one_sent_docs = 0;
117
118
119
120
121

        // Current map index.
        uint64_t map_index = 0;

        // For each epoch:
122
123
124
        for (int32_t epoch=0; epoch<num_epochs; ++epoch) {
            if (map_index >= max_num_samples) {
	        if (verbose && (!second)) {
125
		  cout << "    reached " << max_num_samples << " samples after "
126
127
		       << epoch << " epochs ..." << endl << std::flush;
		}
128
129
130
                break;
            }
            // For each document:
131
            for (int32_t doc=0; doc<(docs.shape(0) - 1); ++doc) {
132

133
                // Document sentences are in [sent_index_first, sent_index_last)
134
135
136
                const auto sent_index_first = docs[doc];
                const auto sent_index_last = docs[doc + 1];

137
138
                // At the begining of the document previous index is the
		// start index.
139
140
141
142
143
144
145
146
                auto prev_start_index = sent_index_first;

                // Remaining documents.
                auto num_remain_sent = sent_index_last - sent_index_first;

                // Some bookkeeping
                if ((epoch == 0) && (!second)) {
                    if (num_remain_sent == 0) {
147
		        ++empty_docs;
148
149
                    }
                    if (num_remain_sent == 1) {
150
		        ++one_sent_docs;
151
152
153
154
155
156
157
                    }
                }

                // If we have more than two sentences.
                if (num_remain_sent > 1) {

                    // Set values.
158
159
160
161
162
                    auto seq_len = int32_t{0};
                    auto num_sent = int32_t{0};
                    auto target_seq_len = get_target_sample_len(short_seq_ratio,
								max_seq_length,
								rand32_gen);
163
164
165
166
167

                    // Loop through sentences.
                    for (auto sent_index=sent_index_first;
                         sent_index < sent_index_last; ++sent_index) {

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
		        // Add the size and number of sentences.
		        seq_len += sizes[sent_index];
		        ++num_sent;
			--num_remain_sent;

			// If we have reached the target length.
			// and if not only one sentence is left in the document.
			// and if we have at least two sentneces.
			// and if we have reached end of the document.
			if (((seq_len >= target_seq_len) &&
			     (num_remain_sent > 1) &&
			     (num_sent > 1) ) || (num_remain_sent == 0)) {

			    // Check for overflow.
			    if ((3 * map_index + 2) >
				std::numeric_limits<int64_t>::max()) {
			        cout << "number of samples exceeded maximum "
				     << "allowed by type int64: "
				     << std::numeric_limits<int64_t>::max()
				     << endl;
				throw std::overflow_error("Number of samples");
			    }

			    // Populate the map.
			    if (second) {
			        const auto map_index_0 = 3 * map_index;
				maps[map_index_0] = static_cast<DocIdx>(prev_start_index);
				maps[map_index_0 + 1] = static_cast<DocIdx>(sent_index + 1);
				maps[map_index_0 + 2] = static_cast<DocIdx>(target_seq_len);
			    }

			    // Update indices / counters.
			    ++map_index;
			    prev_start_index = sent_index + 1;
			    target_seq_len = get_target_sample_len(short_seq_ratio,
								   max_seq_length,
								   rand32_gen);
			    seq_len = 0;
			    num_sent = 0;
			}

                    } // for (auto sent_index=sent_index_first; ...
210
211
212
213
214
                } // if (num_remain_sent > 1) {
            } // for (int doc=0; doc < num_docs; ++doc) {
        } // for (int epoch=0; epoch < num_epochs; ++epoch) {

        if (!second) {
215
	    if (verbose) {
216
	        cout << "   number of empty documents: " << empty_docs <<
217
		  endl << std::flush;
218
		cout << "   number of documents with one sentence: " <<
219
		  one_sent_docs << endl << std::flush;
220
		cout << "   will create mapping for " << map_index <<
221
222
223
224
		  " samples" << endl << std::flush;
	    }
	    assert(maps == NULL);
	    assert(num_samples < 0);
225
            maps = new DocIdx[3*map_index];
226
            num_samples = static_cast<int64_t>(map_index);
227
228
229
230
231
        }

    } // for (int iteration=0; iteration < 2; ++iteration) {

    // Shuffle.
232
233
234
    // We need a 64 bit random number generator as we might have more
    // than 2 billion samples.
    std::mt19937_64 rand64_gen(seed + 1);
235
    for (auto i=(num_samples - 1); i > 0; --i) {
236
237
238
239
240
241
242
      const auto j = static_cast<int64_t>(rand64_gen() % (i + 1));
      const auto i0 = 3 * i;
      const auto j0 = 3 * j;
      // Swap values.
      swap(maps[i0], maps[j0]);
      swap(maps[i0 + 1], maps[j0 + 1]);
      swap(maps[i0 + 2], maps[j0 + 2]);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
243
244
    }

245
246
247
    // Method to deallocate memory.
    py::capsule free_when_done(maps, [](void *mem_) {
            DocIdx *mem = reinterpret_cast<DocIdx*>(mem_);
248
	    delete[] mem;
249
        });
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
250

251
    // Return the numpy array.
252
    const auto byte_size = sizeof(DocIdx);
253
    return py::array(std::vector<int64_t>{num_samples, 3}, // shape
254
                     {3*byte_size, byte_size}, // C-style contiguous strides
255
256
                     maps, // the data pointer
                     free_when_done); // numpy array references
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
257

258
}
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
259

260
261
262

py::array build_mapping(const py::array_t<int64_t>& docs_,
                        const py::array_t<int>& sizes_,
263
264
265
266
                        const int num_epochs,
                        const uint64_t max_num_samples,
                        const int max_seq_length,
                        const double short_seq_prob,
267
268
269
                        const int seed,
			const bool verbose) {

270
    if (sizes_.size() > std::numeric_limits<uint32_t>::max()) {
271
        if (verbose) {
272
273
274
	   cout << "    using uint64 for data mapping..." << endl << std::flush;
	}
	return build_mapping_impl<uint64_t>(docs_, sizes_, num_epochs,
275
276
					    max_num_samples, max_seq_length,
					    short_seq_prob, seed, verbose);
277
    } else {
278
279
280
281
282
283
       if (verbose) {
	   cout << "    using uint32 for data mapping..." << endl << std::flush;
       }
       return build_mapping_impl<uint32_t>(docs_, sizes_, num_epochs,
					   max_num_samples, max_seq_length,
					   short_seq_prob, seed, verbose);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
284
285
286
    }
}

287

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
288
PYBIND11_MODULE(helpers, m) {
289
    m.def("build_mapping", &build_mapping);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
290
}