pretrain_gpt2.py 4.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain GPT2"""

import torch

Neel Kant's avatar
Neel Kant committed
20
21
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
22
from megatron import get_timers
Mohammad's avatar
Mohammad committed
23
from megatron import get_tokenizer
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
24
from megatron import mpu
25
from megatron.data.gpt2_dataset import build_train_valid_test_datasets
26
from megatron.model import GPT2Model, GPT2ModelFirstStage, GPT2ModelIntermediateStage, GPT2ModelLastStage
Mohammad's avatar
Mohammad committed
27
from megatron.training import pretrain
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
from megatron.utils import get_ltor_masks_and_position_ids
29
from megatron.utils import average_losses_across_data_parallel_group
Mohammad's avatar
Mohammad committed
30

Mohammad's avatar
Mohammad committed
31
def model_provider():
32
33
34
    """Build the model."""

    print_rank_0('building GPT2 model ...')
35
    args = get_args()
36
    if mpu.get_pipeline_model_parallel_world_size() > 1:
37
        # Determine model based on position of stage in pipeline.
38
        if mpu.is_pipeline_first_stage():
39
            model = GPT2ModelFirstStage(num_tokentypes=0)
40
        elif mpu.is_pipeline_last_stage():
41
42
43
44
45
46
47
            model = GPT2ModelLastStage(
                num_tokentypes=0, parallel_output=True)
        else:
            model = GPT2ModelIntermediateStage(
                num_tokentypes=0)
    else:
        model = GPT2Model(num_tokentypes=0, parallel_output=True)
48
49
50
51

    return model


Mohammad's avatar
Mohammad committed
52
def get_batch(data_iterator):
53
    """Generate a batch"""
Mohammad's avatar
Mohammad committed
54
    args = get_args()
Mohammad's avatar
Mohammad committed
55
    tokenizer = get_tokenizer()
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
75
        tokens,
Mohammad's avatar
Mohammad committed
76
        tokenizer.eod,
77
        args.reset_position_ids,
78
        args.reset_attention_mask,
79
        args.eod_mask_loss)
80
81
82
83

    return tokens, labels, loss_mask, attention_mask, position_ids


84
def forward_step(data_iterator, model, input_tensor):
85
    """Forward step."""
86
    args = get_args()
Mohammad's avatar
Mohammad committed
87
    timers = get_timers()
88
89

    # Get the batch.
mohammad's avatar
mohammad committed
90
    timers('batch-generator').start()
91
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
Mohammad's avatar
Mohammad committed
92
        data_iterator)
mohammad's avatar
mohammad committed
93
    timers('batch-generator').stop()
94

95
    # Forward pass through the model.
96
    if mpu.is_pipeline_first_stage():
97
        assert input_tensor is None
98
        if mpu.is_pipeline_last_stage():
99
100
101
102
            output_tensor = model(tokens, position_ids, attention_mask,
                                  labels=labels)
        else:
            output_tensor = model(tokens, position_ids, attention_mask)
103
    elif mpu.is_pipeline_last_stage():
104
105
106
107
108
109
        assert input_tensor is not None
        output_tensor = model(input_tensor, attention_mask, labels=labels)
    else:
        assert input_tensor is not None
        output_tensor = model(input_tensor, attention_mask)

110
    if mpu.is_pipeline_last_stage():
111
112
        losses = output_tensor.float()
        loss_mask = loss_mask.view(-1).float()
113
        loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
114
115
116

        # Reduce loss for logging.
        averaged_loss = average_losses_across_data_parallel_group([loss])
117

118
119
        return loss, {'lm loss': averaged_loss[0]}
    return output_tensor
120
121


122
123
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
Mohammad's avatar
Mohammad committed
124
    args = get_args()
Mohammad's avatar
Mohammad committed
125

126
127
128
129
130
131
132
133
134
135
136
    print_rank_0('> building train, validation, and test datasets '
                 'for GPT2 ...')
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        seq_length=args.seq_length,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup))
    print_rank_0("> finished creating GPT2 datasets ...")
137

138
    return train_ds, valid_ds, test_ds
139
140
141


if __name__ == "__main__":
142

143
    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
144
145
             args_defaults={'tokenizer_type': 'GPT2BPETokenizer',
                            'scaled_upper_triang_masked_softmax_fusion': True})