pretrain_gpt2.py 3.44 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain GPT2"""

import torch

20
from megatron import get_args, print_rank_0
Mohammad's avatar
Mohammad committed
21
from megatron import get_timers
Mohammad's avatar
Mohammad committed
22
from megatron import get_tokenizer
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
23
from megatron import mpu
24
from megatron.data.gpt2_dataset import build_train_valid_test_datasets
25
from megatron.model import GPT2Model
Mohammad's avatar
Mohammad committed
26
from megatron.training import pretrain
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
from megatron.utils import get_ltor_masks_and_position_ids
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
from megatron.utils import reduce_losses
Mohammad's avatar
Mohammad committed
29

30

Mohammad's avatar
Mohammad committed
31
def model_provider():
32
33
34
    """Build the model."""

    print_rank_0('building GPT2 model ...')
Mohammad's avatar
Mohammad committed
35
    model = GPT2Model(num_tokentypes=0, parallel_output=True)
36
37
38
39

    return model


Mohammad's avatar
Mohammad committed
40
def get_batch(data_iterator):
41
    """Generate a batch"""
Mohammad's avatar
Mohammad committed
42
    args = get_args()
Mohammad's avatar
Mohammad committed
43
    tokenizer = get_tokenizer()
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
62
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
63
        tokens,
Mohammad's avatar
Mohammad committed
64
        tokenizer.eod,
65
        args.reset_position_ids,
66
        args.reset_attention_mask,
67
        args.eod_mask_loss)
68
69
70
71

    return tokens, labels, loss_mask, attention_mask, position_ids


Mohammad's avatar
Mohammad committed
72
def forward_step(data_iterator, model):
73
    """Forward step."""
74
    args = get_args()
Mohammad's avatar
Mohammad committed
75
    timers = get_timers()
76
77
78
79

    # Get the batch.
    timers('batch generator').start()
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
Mohammad's avatar
Mohammad committed
80
        data_iterator)
81
82
83
    timers('batch generator').stop()

    # Forward model.
mohammad's avatar
mohammad committed
84
85
    losses = model(tokens, position_ids, attention_mask, labels=labels)
    
86
87
88
    loss_mask = loss_mask.view(-1)
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

89
    # Reduce loss for logging.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
90
    reduced_loss = reduce_losses([loss])
91

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
92
    return loss, {'lm loss': reduced_loss[0]}
93
94


95
96
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
Mohammad's avatar
Mohammad committed
97
    args = get_args()
Mohammad's avatar
Mohammad committed
98

99
100
101
102
103
104
105
106
107
108
109
    print_rank_0('> building train, validation, and test datasets '
                 'for GPT2 ...')
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        seq_length=args.seq_length,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup))
    print_rank_0("> finished creating GPT2 datasets ...")
110

111
    return train_ds, valid_ds, test_ds
112
113
114


if __name__ == "__main__":
115

116
    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
Mohammad's avatar
Mohammad committed
117
             args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})