optimizer.py 19.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21

from abc import ABC
from abc import abstractmethod

import torch
22
from torch._six import inf
mohammad's avatar
mohammad committed
23
24

from apex.multi_tensor_apply import multi_tensor_applier
25
from apex.optimizers import FusedAdam as Adam
mohammad's avatar
mohammad committed
26
27
28
import amp_C

from megatron import get_args
mohammad's avatar
mohammad committed
29
30
from megatron import get_timers
from megatron import mpu
31
from megatron.model import import_layernorm
mohammad's avatar
mohammad committed
32
33


34
35
36
37
def get_params_for_weight_decay_optimization(module):
    """Divide params into with-weight-decay and without-weight-decay groups.
    Layernorms and baises will have no weight decay but the rest will.
    """
mohammad's avatar
mohammad committed
38
39

    args = get_args()
40
    LayerNorm = import_layernorm(args.fp32_residual_connection)
mohammad's avatar
mohammad committed
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    weight_decay_params = {'params': []}
    no_weight_decay_params = {'params': [], 'weight_decay': 0.0}
    for module_ in module.modules():
        if isinstance(module_, LayerNorm):
            no_weight_decay_params['params'].extend(
                [p for p in list(module_._parameters.values())
                 if p is not None])
        else:
            weight_decay_params['params'].extend(
                [p for n, p in list(module_._parameters.items())
                 if p is not None and n != 'bias'])
            no_weight_decay_params['params'].extend(
                [p for n, p in list(module_._parameters.items())
                 if p is not None and n == 'bias'])

    return weight_decay_params, no_weight_decay_params


def get_megatron_optimizer(model):

    args = get_args()

    # Base optimizer.
    param_groups = get_params_for_weight_decay_optimization(model)
mohammad's avatar
mohammad committed
66
67
68
69
70
    optimizer = Adam(param_groups,
                     lr=args.lr,
                     weight_decay=args.weight_decay,
                     betas=(args.adam_beta1, args.adam_beta2),
                     eps=args.adam_eps)
mohammad's avatar
mohammad committed
71

mohammad's avatar
mohammad committed
72
73
74
75
76
    if args.fp16:
        # Constant loss scale.
        if args.loss_scale:
            grad_scaler = ConstantGradScaler(args.loss_scale)
        # Dynamic loss scale.
77
        else:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
84
85
86
87
            grad_scaler = DynamicGradScaler(
                initial_scale=args.initial_loss_scale,
                min_scale=args.min_loss_scale,
                growth_factor=2.0,
                backoff_factor=0.5,
                growth_interval=args.loss_scale_window,
                hysteresis=args.hysteresis)
        # Megatron optimizer.
        return FP16OptimizerWithFP16Params(optimizer, grad_scaler,
                                           args.clip_grad)
mohammad's avatar
mohammad committed
88

mohammad's avatar
mohammad committed
89
90
    # FP32.
    return FP32Optimizer(optimizer, model, args.clip_grad)
mohammad's avatar
mohammad committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124



class MegatronGradScaler(ABC):

    def __init__(self, initial_scale):
        """Initialize scale value with the input initial scale."""
        assert initial_scale > 0.0
        self._scale = torch.cuda.FloatTensor([initial_scale])

    @property
    def scale(self):
        return self._scale

    @property
    def inv_scale(self):
        return self._scale.double().reciprocal().float()

    @abstractmethod
    def update(self, found_inf):
        pass

    '''
    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state_dict):
        pass
    '''


class ConstantGradScaler(MegatronGradScaler):
125
126
127

    def update(self, found_inf):
        pass
mohammad's avatar
mohammad committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201


class DynamicGradScaler(MegatronGradScaler):

    def __init__(self, initial_scale, min_scale,
                 growth_factor, backoff_factor,
                 growth_interval, hysteresis):
        """"Grad scaler with dynamic scale that gets adjusted
        during training."""
        super(DynamicGradScaler, self).__init__(initial_scale)

        # Lower bound on the scale.
        assert min_scale > 0.0
        assert min_scale <= initial_scale
        self.min_scale = torch.cuda.FloatTensor([min_scale])
        # Growth and backoff factors for the scale.
        assert growth_factor > 1.0
        self.growth_factor = torch.cuda.FloatTensor([growth_factor])
        assert backoff_factor < 1.0
        assert backoff_factor > 0.0
        self.backoff_factor = torch.cuda.FloatTensor([backoff_factor])
        # Interval over which if we don't see any inf/nan,
        # we will scale the grad scale by the growth factor.
        assert growth_interval > 0
        self.growth_interval = growth_interval
        # Number of inf/nans we should see before scaling down
        # the grad scale by the backoff factor.
        assert hysteresis > 0
        self.hysteresis = hysteresis

        # Trackers.
        self._growth_tracker = 0
        self._hysteresis_tracker = self.hysteresis


    def update(self, found_inf):

        # If we have an inf/nan, growth tracker is set to 0
        # and hysterisis tracker is reduced by 1.
        if found_inf:
            self._growth_tracker = 0
            self._hysteresis_tracker -= 1
            # Now if we are our of hysteresis count, scale down the loss.
            if self._hysteresis_tracker <= 0:
                self._scale = torch.max(self._scale * self.backoff_factor,
                                        self.min_scale)
        else:
            # If there is no nan/inf, increment the growth tracker.
            self._growth_tracker += 1
            # If we have had enough consequitive intervals with no nan/inf:
            if self._growth_tracker == self.growth_interval:
                # Reset the tracker and hysteresis trackers,
                self._growth_tracker = 0
                self._hysteresis_tracker = self.hysteresis
                # and scale up the loss scale.
                self._scale = self._scale * self.growth_factor



def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def _clip_grad_norm(parameters, max_norm, norm_type=2):
    """Clips gradient norm of an iterable of parameters.

    This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
    added functionality to handle model parallel parameters. Note that
    the gradients are modified in place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """
mohammad's avatar
mohammad committed
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
    filtered_parameters = []
    for param in parameters:
        grad_not_none = param.grad is not None
        is_not_shared = not hasattr(param, 'shared') or not param.shared
        is_not_tp_duplicate = param.tensor_model_parallel or \
                              (mpu.get_tensor_model_parallel_rank() == 0)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            filtered_parameters.append(param)
    parameters = filtered_parameters

    # Norm parameters.
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    total_norm = 0.0

    # Calculate norm.
    if norm_type == inf:
        total_norm = max(param.grad.detach().abs().max()
                         for param in parameters)
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
        # Take max across all model-parallel GPUs.
        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
        total_norm = total_norm_cuda[0].item()

mohammad's avatar
mohammad committed
253
    else:
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        for param in parameters:
            param_norm = torch.norm(param.grad.detach(), norm_type)
            total_norm += param_norm.item() ** norm_type
        # Sum across all model-parallel GPUs.
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.SUM,
                                     group=mpu.get_model_parallel_group())
        total_norm = total_norm_cuda[0].item() ** (1. / norm_type)

    # Scale.
    clip_coef = max_norm / (total_norm + 1e-6)
    if clip_coef < 1:
        for param in parameters:
            param.grad.detach().mul_(clip_coef)

    return total_norm


mohammad's avatar
mohammad committed
273
274
275
276
277
278
279
280

class MegatronOptimizer(ABC):

    def __init__(self, optimizer):
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'

281
282
283
284
285
286
287
    def clip_grad_norm(self, clip_grad):
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
        _clip_grad_norm(params, clip_grad)

mohammad's avatar
mohammad committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

    @abstractmethod
    def get_loss_scale(self):
        pass

    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

    @abstractmethod
    def step(self):
        pass

    '''
    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state_dict):
        pass
    '''

    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



class FP16OptimizerWithFP16Params(MegatronOptimizer):


    def __init__(self, optimizer, grad_scaler, clip_grad):
        super(FP16OptimizerWithFP16Params, self).__init__(optimizer)

        self.grad_scaler = grad_scaler
        self.clip_grad = clip_grad

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
        self.found_inf = torch.cuda.FloatTensor([0.0])

        # Dummy tensor needed for apex multi-apply tensor.
        self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # ======================
        # master parameter stuff
        # ======================

        # Three groups of parameters:
        #   fp16_groups: original fp16 parameters
        #   fp32_from_fp16_groups: fp32 copy of fp16 parameters
        #   fp32_from_fp32_groups: original fp32 parameters
        self.fp16_groups = []
        self.fp32_from_fp16_groups = []
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
            fp16_params_this_group = []
            fp32_params_this_group = []
            fp32_from_fp16_params_this_group = []
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

                    # fp16 params:
                    if param.type() == 'torch.cuda.HalfTensor':
                        fp16_params_this_group.append(param)
                        # Create a copy
                        master_param = param.detach().clone().float()
                        # Store grads
                        master_param.requires_grad = True
                        # Copy tensor model parallel attributes.
mohammad's avatar
mohammad committed
382
383
                        mpu.copy_tensor_model_parallel_attributes(master_param,
                                                                  param)
384
385
                        if hasattr(param, 'shared'):
                            master_param.shared = param.shared
mohammad's avatar
mohammad committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                        # Replace the optimizer params with the new fp32 copy.
                        param_group['params'][i] = master_param
                        fp32_from_fp16_params_this_group.append(master_param)
                        # Reset existing state dict key to the new master param.
                        if param in self.optimizer.state:
                            self.optimizer.state[master_param] \
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
                        raise TypeError("Wrapped parameters must be either "
                                        "torch.cuda.FloatTensor or "
                                        "torch.cuda.HalfTensor. "
                                        "Received {}".format(param.type()))

            self.fp16_groups.append(fp16_params_this_group)
            self.fp32_from_fp16_groups.append(fp32_from_fp16_params_this_group)
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
                fp16_groups & fp32_from_fp32_groups."""
        for group in self.fp16_groups:
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


    def get_loss_scale(self):
        return self.grad_scaler.scale


    @torch.no_grad()
    def step(self):

mohammad's avatar
mohammad committed
430
431
        timers = get_timers()

mohammad's avatar
mohammad committed
432
433
434
435
        # ==================================================
        # Copy gradients from model params to master params.
        # ==================================================

mohammad's avatar
mohammad committed
436
        timers('optimizer-copy-to-master-grad').start()
mohammad's avatar
mohammad committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        # This only needs to be done for the fp16 group.
        model_grads = []
        master_grads = []
        for model_group, master_group in zip(self.fp16_groups,
                                             self.fp32_from_fp16_groups):
            for model_param, master_param in zip(model_group, master_group):
                if model_param.grad is not None:
                    if master_param.grad is None:
                        master_param.grad = torch.empty_like(master_param)
                    model_grads.append(model_param.grad)
                    master_grads.append(master_param.grad)
        self._dummy_overflow_buf.fill_(0)
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             self._dummy_overflow_buf,
                             [model_grads, master_grads],
                             1.0)
mohammad's avatar
mohammad committed
454
        timers('optimizer-copy-to-master-grad').stop()
mohammad's avatar
mohammad committed
455
456
457
458
459

        # ==============================
        # Unscale and check for inf/nan.
        # ==============================

mohammad's avatar
mohammad committed
460
        timers('optimizer-unscale-and-check-inf').start()
mohammad's avatar
mohammad committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        # Append fp32 parameters.
        for master_group in self.fp32_from_fp32_groups:
            for master_param in master_group:
                if master_param.grad is not None:
                    master_grads.append(master_param.grad)
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            master_grads, self.found_inf, self.grad_scaler.inv_scale)
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
mohammad's avatar
mohammad committed
475
        timers('optimizer-unscale-and-check-inf').stop()
mohammad's avatar
mohammad committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

        # ==================================
        # We are done with scaling gradients
        # so we can update the loss scale.
        # ==================================
        found_inf_flag = (self.found_inf.item() > 0)
        self.grad_scaler.update(found_inf_flag)

        # =====================================
        # If we found inf/nan, skip the update.
        # =====================================
        if found_inf_flag:
            return False

        # ==========================
        # Clip the master gradients.
        # ==========================

mohammad's avatar
mohammad committed
494
        timers('optimizer-clip-master-grad').start()
495
        self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
496
        timers('optimizer-clip-master-grad').stop()
mohammad's avatar
mohammad committed
497
498
499
500
501
502
503
504
505
506
507

        # ===================
        # Step the optimizer.
        # ===================

        self.optimizer.step()

        # =================================
        # Update params from master params.
        # =================================

mohammad's avatar
mohammad committed
508
        timers('optimizer-copy-master-to-model-params').start()
mohammad's avatar
mohammad committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        # Only needed for the fp16 params.
        model_data = []
        master_data = []
        for model_group, master_group in zip(self.fp16_groups,
                                             self.fp32_from_fp16_groups):
            for model_param, master_param in zip(model_group, master_group):
                model_data.append(model_param.data)
                master_data.append(master_param.data)
        self._dummy_overflow_buf.fill_(0)
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             self._dummy_overflow_buf,
                             [master_data, model_data],
                             1.0)
mohammad's avatar
mohammad committed
523
        timers('optimizer-copy-master-to-model-params').stop()
mohammad's avatar
mohammad committed
524
525

        return True
mohammad's avatar
mohammad committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555


class FP32Optimizer(MegatronOptimizer):

    def __init__(self, optimizer, model, clip_grad):

        super(FP32Optimizer, self).__init__(optimizer)
        self.model = model
        self.clip_grad = clip_grad
        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
        Always return auccessful since there is no overflow."""

        # Clip gradients.
        if self.clip_grad > 0.0:
556
            self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570

        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
        return True


    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)