layers.py 22.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch


import math

import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.parameter import Parameter

28
29
from .initialize import get_tensor_model_parallel_rank
from .initialize import get_tensor_model_parallel_world_size
30
from .initialize import get_tensor_model_parallel_group
31
from .mappings import copy_to_tensor_model_parallel_region
32
33
from .mappings import gather_from_tensor_model_parallel_region
from .mappings import gather_from_sequence_parallel_region
34
from .mappings import reduce_from_tensor_model_parallel_region
35
36
from .mappings import scatter_to_tensor_model_parallel_region
from .mappings import reduce_scatter_to_sequence_parallel_region
37

38
39
40
41
from .random import get_cuda_rng_tracker
from .utils import divide
from .utils import split_tensor_along_last_dim
from .utils import VocabUtility
42
from megatron import get_args, get_global_memory_buffer
43

mohammad's avatar
mohammad committed
44
45
46
47
_MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
                                      'partition_dim': -1,
                                      'partition_stride': 1}

mohammad's avatar
mohammad committed
48
49
50
51
52
53
def param_is_not_tensor_parallel_duplicate(param):
    return (hasattr(param, 'tensor_model_parallel') and
            param.tensor_model_parallel) or (
                get_tensor_model_parallel_rank() == 0)


mohammad's avatar
mohammad committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride):
    # Make sure the attributes are not set.
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        assert not hasattr(tensor, attribute)
    # Set the attributes.
    setattr(tensor, 'tensor_model_parallel', is_parallel)
    setattr(tensor, 'partition_dim', dim)
    setattr(tensor, 'partition_stride', stride)


def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor):
    def maybe_set(attribute, value):
        if not hasattr(tensor, attribute):
            setattr(tensor, attribute, value)
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute])


def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor):
    def maybe_copy(attribute):
        if hasattr(source_tensor, attribute):
            setattr(destination_tensor, attribute,
                    getattr(source_tensor, attribute))
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_copy(attribute)


81
82
83
84
def _initialize_affine_weight_gpu(weight, init_method,
                                  partition_dim, stride=1):
    """Initialize affine weight for model parallel on GPU."""

mohammad's avatar
mohammad committed
85
86
87
88
89
    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)

90
91
92
93
94
95
96
97
    with get_cuda_rng_tracker().fork():
        init_method(weight)


def _initialize_affine_weight_cpu(weight, output_size, input_size,
                                  per_partition_size, partition_dim,
                                  init_method, stride=1,
                                  return_master_weight=False):
98
99
100
101
    """Initialize affine weight for model parallel.

    Build the master weight on all processes and scatter
    the relevant chunk."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
102

mohammad's avatar
mohammad committed
103
104
105
106
    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
107

108
109
    # Initialize master weight
    master_weight = torch.empty(output_size, input_size,
110
                                dtype=torch.float,
111
112
                                requires_grad=False)
    init_method(master_weight)
113
114
    args = get_args()
    master_weight = master_weight.to(dtype=args.params_dtype)
115
116
117
118
119

    # Split and copy
    per_partition_per_stride_size = divide(per_partition_size, stride)
    weight_list = torch.split(master_weight, per_partition_per_stride_size,
                              dim=partition_dim)
Jared Casper's avatar
Jared Casper committed
120
    rank = get_tensor_model_parallel_rank()
121
    world_size = get_tensor_model_parallel_world_size()
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    my_weight_list = weight_list[rank::world_size]

    with torch.no_grad():
        torch.cat(my_weight_list, dim=partition_dim, out=weight)
    if return_master_weight:
        return master_weight
    return None


class VocabParallelEmbedding(torch.nn.Module):
    """Embedding parallelized in the vocabulary dimension.

    This is mainly adapted from torch.nn.Embedding and all the default
    values are kept.
    Arguments:
        num_embeddings: vocabulary size.
        embedding_dim: size of hidden state.
        init_method: method to initialize weights.
    """
Neel Kant's avatar
Neel Kant committed
141

142
143
144
145
146
147
148
149
150
151
152
153
154
    def __init__(self, num_embeddings, embedding_dim,
                 init_method=init.xavier_normal_):
        super(VocabParallelEmbedding, self).__init__()
        # Keep the input dimensions.
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        # Set the detauls for compatibility.
        self.padding_idx = None
        self.max_norm = None
        self.norm_type = 2.
        self.scale_grad_by_freq = False
        self.sparse = False
        self._weight = None
155
        self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
156
157
158
        # Divide the weight matrix along the vocaburaly dimension.
        self.vocab_start_index, self.vocab_end_index = \
            VocabUtility.vocab_range_from_global_vocab_size(
159
160
                self.num_embeddings, get_tensor_model_parallel_rank(),
                self.tensor_model_parallel_size)
161
        self.num_embeddings_per_partition = self.vocab_end_index - \
Neel Kant's avatar
Neel Kant committed
162
            self.vocab_start_index
163

164
165
        # Allocate weights and initialize.
        args = get_args()
166
        if args.use_cpu_initialization:
167
168
169
170
171
172
173
174
175
176
177
178
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                dtype=args.params_dtype))
            _initialize_affine_weight_cpu(
                self.weight, self.num_embeddings, self.embedding_dim,
                self.num_embeddings_per_partition, 0, init_method)
        else:
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=0, stride=1)
179
180

    def forward(self, input_):
181
        if self.tensor_model_parallel_size > 1:
182
183
184
185
186
187
188
189
190
            # Build the mask.
            input_mask = (input_ < self.vocab_start_index) | \
                         (input_ >= self.vocab_end_index)
            # Mask the input.
            masked_input = input_.clone() - self.vocab_start_index
            masked_input[input_mask] = 0
        else:
            masked_input = input_
            # Get the embeddings.
191
192
193
194
195
        output_parallel = F.embedding(masked_input, self.weight,
                                      self.padding_idx, self.max_norm,
                                      self.norm_type, self.scale_grad_by_freq,
                                      self.sparse)
        # Mask the output embedding.
196
        if self.tensor_model_parallel_size > 1:
197
            output_parallel[input_mask, :] = 0.0
198
        # Reduce across all the model parallel GPUs.
199
        output = reduce_from_tensor_model_parallel_region(output_parallel)
200
201
202
        return output


203
class LinearWithGradAccumulationAndAsyncCommunication(torch.autograd.Function):
204
    """
205
206
    Linear layer execution with asynchronous communication and gradient accumulation
    fusion in backprop.
207
    """
Vijay Korthikanti's avatar
Vijay Korthikanti committed
208

209
    @staticmethod
210
    def forward(ctx, input, weight, bias, gradient_accumulation_fusion,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
211
                async_grad_allreduce, sequence_parallel):
212
        ctx.save_for_backward(input, weight)
slym's avatar
slym committed
213
        ctx.use_bias = bias is not None
214
215
        ctx.gradient_accumulation_fusion = gradient_accumulation_fusion
        ctx.async_grad_allreduce = async_grad_allreduce
Vijay Korthikanti's avatar
Vijay Korthikanti committed
216
        ctx.sequence_parallel = sequence_parallel
Vijay Korthikanti's avatar
Vijay Korthikanti committed
217
      
Vijay Korthikanti's avatar
Vijay Korthikanti committed
218
        if sequence_parallel:
219
220
221
222
            world_size = get_tensor_model_parallel_world_size()
            dim_size = list(input.size())
            dim_size[0] = dim_size[0] * world_size

Vijay Korthikanti's avatar
Vijay Korthikanti committed
223
            all_gather_buffer = \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
224
                get_global_memory_buffer().get_tensor(dim_size, input.dtype, "mpu")
Vijay Korthikanti's avatar
Vijay Korthikanti committed
225
            torch.distributed._all_gather_base(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
226
                all_gather_buffer,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
227
228
                input,
                group=get_tensor_model_parallel_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
229
            total_input = all_gather_buffer
230
231
232
        else:
            total_input = input

233
234
235
236
237
238
239
240
241
242
        output = torch.matmul(total_input, weight.t())
        if bias is not None:
            output = output + bias
        return output

    @staticmethod
    def backward(ctx, grad_output):
        input, weight = ctx.saved_tensors
        use_bias = ctx.use_bias
        
Vijay Korthikanti's avatar
Vijay Korthikanti committed
243
        if ctx.sequence_parallel:
244
245
246
247
            world_size = get_tensor_model_parallel_world_size()
            dim_size = list(input.size())
            dim_size[0] = dim_size[0] * world_size

Vijay Korthikanti's avatar
Vijay Korthikanti committed
248
            all_gather_buffer = \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
249
                get_global_memory_buffer().get_tensor(dim_size, input.dtype, "mpu")
Vijay Korthikanti's avatar
Vijay Korthikanti committed
250
            handle = torch.distributed._all_gather_base(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
251
                all_gather_buffer,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
252
253
                input,
                group=get_tensor_model_parallel_group(), async_op=True)
254

255
256
257
            # Delay the start of intput gradient computation shortly (3us) to have
            # gather scheduled first and have GPU resources allocated
            _ = torch.empty(1, device=grad_output.device) + 1
Vijay Korthikanti's avatar
Vijay Korthikanti committed
258
            total_input = all_gather_buffer
259
260
        else:
            total_input = input
261
262
        grad_input = grad_output.matmul(weight)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
263
        if ctx.sequence_parallel:
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
            handle.wait()

        # Convert the tensor shapes to 2D for execution compatibility
        grad_output = grad_output.view(grad_output.shape[0] * grad_output.shape[1],
                                       grad_output.shape[2])
        total_input = total_input.view(total_input.shape[0] * total_input.shape[1],
				       total_input.shape[2])
 
        if ctx.async_grad_allreduce:
            # Asynchronous all-reduce
            handle = torch.distributed.all_reduce(
                    grad_input, group=get_tensor_model_parallel_group(), async_op=True)
            # Delay the start of weight gradient computation shortly (3us) to have
            # all-reduce scheduled first and have GPU resources allocated
            _ = torch.empty(1, device=grad_output.device) + 1
 
Vijay Korthikanti's avatar
Vijay Korthikanti committed
280
        if ctx.sequence_parallel:
281
282
283
            assert not ctx.async_grad_allreduce
            dim_size = list(input.size())
            sub_grad_input = torch.empty(dim_size, dtype=input.dtype,
284
285
                                         device=torch.cuda.current_device(),
                                         requires_grad=False)
286
287
288
289
290
291
292
293
294
295
            # reduce_scatter
            handle = torch.distributed._reduce_scatter_base(sub_grad_input, grad_input, 
                                                            group=get_tensor_model_parallel_group(),
                                                            async_op=True)
            # Delay the start of weight gradient computation shortly (3us) to have
            # reduce scatter scheduled first and have GPU resources allocated
            _ = torch.empty(1, device=grad_output.device) + 1
        

        if ctx.gradient_accumulation_fusion:
296
            import fused_dense_cuda
297
298
299
300
            fused_dense_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, weight.main_grad)
            grad_weight = None
        else:
            grad_weight = grad_output.t().matmul(total_input)
301
302
        grad_bias = grad_output.sum(dim=0) if use_bias else None

Vijay Korthikanti's avatar
Vijay Korthikanti committed
303
        if ctx.sequence_parallel:
304
            handle.wait()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
305
            return sub_grad_input, grad_weight, grad_bias, None, None, None
306

Sangkug Lym's avatar
Sangkug Lym committed
307
308
        if ctx.async_grad_allreduce:
            handle.wait()
309

Vijay Korthikanti's avatar
Vijay Korthikanti committed
310
        return grad_input, grad_weight, grad_bias, None, None, None
311
312


313
314
315
316
317
318
319
320
321
322
class ColumnParallelLinear(torch.nn.Module):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias
Sangkug Lym's avatar
Sangkug Lym committed
323
        gather_output: If true, call all-gather on output and make Y available
324
325
326
327
328
329
330
331
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
332
333
334
        skip_bias_add: This was added to enable performance optimations where bias
                       can be fused with other elementwise operations. we skip 
                       adding bias but instead return it.
335
    """
Neel Kant's avatar
Neel Kant committed
336

337
338
    def __init__(self, input_size, output_size, bias=True, gather_output=True,
                 init_method=init.xavier_normal_, stride=1,
339
340
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
341
342
343
344
345
346
347
        super(ColumnParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.gather_output = gather_output
        # Divide the weight matrix along the last dimension.
348
        world_size = get_tensor_model_parallel_world_size()
349
        self.output_size_per_partition = divide(output_size, world_size)
350
        self.skip_bias_add = skip_bias_add
351
352
353
354

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
355
356
        # Initialize weight.
        args = get_args()
357
        if args.use_cpu_initialization:
358
359
360
361
362
363
364
365
366
367
368
369
370
            self.weight = Parameter(torch.empty(self.output_size_per_partition,
                                                self.input_size,
                                                dtype=args.params_dtype))
            self.master_weight = _initialize_affine_weight_cpu(
                self.weight, self.output_size, self.input_size,
                self.output_size_per_partition, 0, init_method,
                stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size_per_partition, self.input_size,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=0, stride=stride)
hwijeen's avatar
hwijeen committed
371

372
        if bias:
373
            if args.use_cpu_initialization:
374
375
376
377
378
379
380
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition, dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition,
                    device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
381
            set_tensor_model_parallel_attributes(self.bias, True, 0, stride)
382
383
384
385
386
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
slym's avatar
slym committed
387
        self.async_tensor_model_parallel_allreduce = (
Sangkug Lym's avatar
Sangkug Lym committed
388
                args.async_tensor_model_parallel_allreduce and
slym's avatar
slym committed
389
                world_size > 1)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
390
391
        self.sequence_parallel = (
                args.sequence_parallel and
392
393
                world_size > 1)
        assert not self.async_tensor_model_parallel_allreduce or \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
394
            not self.sequence_parallel
Sangkug Lym's avatar
Sangkug Lym committed
395
        self.gradient_accumulation_fusion = args.gradient_accumulation_fusion
396
397

    def forward(self, input_):
398
        bias = self.bias if not self.skip_bias_add else None
399

400
        if self.async_tensor_model_parallel_allreduce or \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
401
                self.sequence_parallel:
402
            input_parallel = input_
403
        else:
404
405
406
407
            input_parallel = copy_to_tensor_model_parallel_region(input_)
        # Matrix multiply.
        output_parallel = LinearWithGradAccumulationAndAsyncCommunication.apply(
            input_parallel, self.weight, bias, self.gradient_accumulation_fusion,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
408
            self.async_tensor_model_parallel_allreduce, self.sequence_parallel)
409
410
        if self.gather_output:
            # All-gather across the partitions.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
411
            assert not self.sequence_parallel
412
            output = gather_from_tensor_model_parallel_region(output_parallel)
413
        else:
hwijeen's avatar
hwijeen committed
414
            output = output_parallel
415
416
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443


class RowParallelLinear(torch.nn.Module):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
hwijeen's avatar
hwijeen committed
444
445
        skip_bias_add: This was added to enable performance optimization where bias
                       can be fused with other elementwise operations. We skip
446
                       adding bias but instead return it.
447
    """
Neel Kant's avatar
Neel Kant committed
448

449
450
451
    def __init__(self, input_size, output_size, bias=True,
                 input_is_parallel=False,
                 init_method=init.xavier_normal_, stride=1,
452
453
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
454
455
456
457
458
459
460
        super(RowParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.input_is_parallel = input_is_parallel
        # Divide the weight matrix along the last dimension.
461
        world_size = get_tensor_model_parallel_world_size()
462
        self.input_size_per_partition = divide(input_size, world_size)
463
        self.skip_bias_add = skip_bias_add
464
465
466
467

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
468
469
        # Initialize weight.
        args = get_args()
470
        if args.use_cpu_initialization:
471
472
473
474
475
476
477
478
479
480
481
482
483
            self.weight = Parameter(torch.empty(self.output_size,
                                                self.input_size_per_partition,
                                                dtype=args.params_dtype))
            self.master_weight = _initialize_affine_weight_cpu(
                self.weight, self.output_size, self.input_size,
                self.input_size_per_partition, 1, init_method,
                stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size, self.input_size_per_partition,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=1, stride=stride)
484
        if bias:
485
            if args.use_cpu_initialization:
486
487
488
489
490
491
                self.bias = Parameter(torch.empty(self.output_size,
                                                  dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size, device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
492
            setattr(self.bias, 'sequence_parallel', args.sequence_parallel)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
493

494
495
496
497
498
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
499
        self.sequence_parallel = args.sequence_parallel
Sangkug Lym's avatar
Sangkug Lym committed
500
        self.gradient_accumulation_fusion = args.gradient_accumulation_fusion
501

502

Vijay Korthikanti's avatar
Vijay Korthikanti committed
503

504
505
506
507
508
    def forward(self, input_):
        # Set up backprop all-reduce.
        if self.input_is_parallel:
            input_parallel = input_
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
509
            assert not self.sequence_parallel
510
            input_parallel = scatter_to_tensor_model_parallel_region(input_)
511
        # Matrix multiply.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
512
        output_parallel = LinearWithGradAccumulationAndAsyncCommunication.apply(
Sangkug Lym's avatar
Sangkug Lym committed
513
            input_parallel, self.weight, None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
514
            self.gradient_accumulation_fusion, None, None)
515
        # All-reduce across all the partitions.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
516
        if self.sequence_parallel:
517
            output_ = reduce_scatter_to_sequence_parallel_region(output_parallel)
518
519
        else:
            output_ = reduce_from_tensor_model_parallel_region(output_parallel)
520
521
522
        if not self.skip_bias_add:
            output = output_ + self.bias if self.bias is not None else output_
            output_bias = None
523
524
        else:
            output = output_
525
526
527
            output_bias = self.bias
        return output, output_bias