layers.py 18.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch


import math

import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.parameter import Parameter

28
29
from .initialize import get_tensor_model_parallel_rank
from .initialize import get_tensor_model_parallel_world_size
30
from .initialize import get_tensor_model_parallel_group
31
from .mappings import copy_to_tensor_model_parallel_region
32
33
from .mappings import gather_from_tensor_model_parallel_region
from .mappings import gather_from_sequence_parallel_region
34
from .mappings import reduce_from_tensor_model_parallel_region
35
36
from .mappings import scatter_to_tensor_model_parallel_region
from .mappings import reduce_scatter_to_sequence_parallel_region
37

38
39
40
41
from .random import get_cuda_rng_tracker
from .utils import divide
from .utils import split_tensor_along_last_dim
from .utils import VocabUtility
42
from megatron import get_args
43

mohammad's avatar
mohammad committed
44
45
46
47
48
49

_MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
                                      'partition_dim': -1,
                                      'partition_stride': 1}


mohammad's avatar
mohammad committed
50
51
52
53
54
55
def param_is_not_tensor_parallel_duplicate(param):
    return (hasattr(param, 'tensor_model_parallel') and
            param.tensor_model_parallel) or (
                get_tensor_model_parallel_rank() == 0)


mohammad's avatar
mohammad committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride):
    # Make sure the attributes are not set.
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        assert not hasattr(tensor, attribute)
    # Set the attributes.
    setattr(tensor, 'tensor_model_parallel', is_parallel)
    setattr(tensor, 'partition_dim', dim)
    setattr(tensor, 'partition_stride', stride)


def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor):
    def maybe_set(attribute, value):
        if not hasattr(tensor, attribute):
            setattr(tensor, attribute, value)
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute])


def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor):
    def maybe_copy(attribute):
        if hasattr(source_tensor, attribute):
            setattr(destination_tensor, attribute,
                    getattr(source_tensor, attribute))
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_copy(attribute)


83
84
85
86
def _initialize_affine_weight_gpu(weight, init_method,
                                  partition_dim, stride=1):
    """Initialize affine weight for model parallel on GPU."""

mohammad's avatar
mohammad committed
87
88
89
90
91
    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)

92
93
94
95
96
97
98
99
    with get_cuda_rng_tracker().fork():
        init_method(weight)


def _initialize_affine_weight_cpu(weight, output_size, input_size,
                                  per_partition_size, partition_dim,
                                  init_method, stride=1,
                                  return_master_weight=False):
100
101
102
103
    """Initialize affine weight for model parallel.

    Build the master weight on all processes and scatter
    the relevant chunk."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
104

mohammad's avatar
mohammad committed
105
106
107
108
    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
109

110
111
    # Initialize master weight
    master_weight = torch.empty(output_size, input_size,
112
                                dtype=torch.float,
113
114
                                requires_grad=False)
    init_method(master_weight)
115
116
    args = get_args()
    master_weight = master_weight.to(dtype=args.params_dtype)
117
118
119
120
121

    # Split and copy
    per_partition_per_stride_size = divide(per_partition_size, stride)
    weight_list = torch.split(master_weight, per_partition_per_stride_size,
                              dim=partition_dim)
Jared Casper's avatar
Jared Casper committed
122
    rank = get_tensor_model_parallel_rank()
123
    world_size = get_tensor_model_parallel_world_size()
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    my_weight_list = weight_list[rank::world_size]

    with torch.no_grad():
        torch.cat(my_weight_list, dim=partition_dim, out=weight)
    if return_master_weight:
        return master_weight
    return None


class VocabParallelEmbedding(torch.nn.Module):
    """Embedding parallelized in the vocabulary dimension.

    This is mainly adapted from torch.nn.Embedding and all the default
    values are kept.
    Arguments:
        num_embeddings: vocabulary size.
        embedding_dim: size of hidden state.
        init_method: method to initialize weights.
    """
Neel Kant's avatar
Neel Kant committed
143

144
145
146
147
148
149
150
151
152
153
154
155
156
    def __init__(self, num_embeddings, embedding_dim,
                 init_method=init.xavier_normal_):
        super(VocabParallelEmbedding, self).__init__()
        # Keep the input dimensions.
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        # Set the detauls for compatibility.
        self.padding_idx = None
        self.max_norm = None
        self.norm_type = 2.
        self.scale_grad_by_freq = False
        self.sparse = False
        self._weight = None
157
        self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
158
159
160
        # Divide the weight matrix along the vocaburaly dimension.
        self.vocab_start_index, self.vocab_end_index = \
            VocabUtility.vocab_range_from_global_vocab_size(
161
162
                self.num_embeddings, get_tensor_model_parallel_rank(),
                self.tensor_model_parallel_size)
163
        self.num_embeddings_per_partition = self.vocab_end_index - \
Neel Kant's avatar
Neel Kant committed
164
            self.vocab_start_index
165

166
167
        # Allocate weights and initialize.
        args = get_args()
168
        if args.use_cpu_initialization:
169
170
171
172
173
174
175
176
177
178
179
180
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                dtype=args.params_dtype))
            _initialize_affine_weight_cpu(
                self.weight, self.num_embeddings, self.embedding_dim,
                self.num_embeddings_per_partition, 0, init_method)
        else:
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=0, stride=1)
181
182

    def forward(self, input_):
183
        if self.tensor_model_parallel_size > 1:
184
185
186
187
188
189
190
191
192
            # Build the mask.
            input_mask = (input_ < self.vocab_start_index) | \
                         (input_ >= self.vocab_end_index)
            # Mask the input.
            masked_input = input_.clone() - self.vocab_start_index
            masked_input[input_mask] = 0
        else:
            masked_input = input_
            # Get the embeddings.
193
194
195
196
197
        output_parallel = F.embedding(masked_input, self.weight,
                                      self.padding_idx, self.max_norm,
                                      self.norm_type, self.scale_grad_by_freq,
                                      self.sparse)
        # Mask the output embedding.
198
        if self.tensor_model_parallel_size > 1:
199
            output_parallel[input_mask, :] = 0.0
200
        # Reduce across all the model parallel GPUs.
201
        output = reduce_from_tensor_model_parallel_region(output_parallel)
202
203
204
        return output


slym's avatar
slym committed
205
class ColumnParallelLinearWithAsyncAllreduce(torch.autograd.Function):
206
207
208
209
210
    """
    Column-parallel linear layer execution with asynchronous all-reduce
    execution in backprop.
    """
    @staticmethod
slym's avatar
slym committed
211
    def forward(ctx, input, weight, bias):
212
        ctx.save_for_backward(input, weight)
slym's avatar
slym committed
213
        ctx.use_bias = bias is not None
214
        output = torch.matmul(input, weight.t())
slym's avatar
slym committed
215
        if bias is not None:
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
            output = output + bias
        return output

    @staticmethod
    def backward(ctx, grad_output):
        input, weight = ctx.saved_tensors
        use_bias = ctx.use_bias
        grad_input = grad_output.matmul(weight)
        # Asyncronous all-reduce
        handle = torch.distributed.all_reduce(
                grad_input, group=get_tensor_model_parallel_group(), async_op=True)
        # Delay the start of weight gradient computation shortly (3us) to have
        # all-reduce scheduled first and have GPU resources allocated
        _ = torch.empty(1, device=grad_output.device) + 1
        grad_weight = grad_output.t().matmul(input)
        grad_bias = grad_output.sum(dim=0) if use_bias else None
        handle.wait()
slym's avatar
slym committed
233
        return grad_input, grad_weight, grad_bias
234
235


236
237
238
239
240
241
242
243
244
245
class ColumnParallelLinear(torch.nn.Module):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias
vycezhong's avatar
vycezhong committed
246
        gather_output: If true, call all-gather on output and make Y avaiable
247
248
249
250
251
252
253
254
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
255
256
257
        skip_bias_add: This was added to enable performance optimations where bias
                       can be fused with other elementwise operations. we skip 
                       adding bias but instead return it.
258
    """
Neel Kant's avatar
Neel Kant committed
259

260
261
    def __init__(self, input_size, output_size, bias=True, gather_output=True,
                 init_method=init.xavier_normal_, stride=1,
262
263
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
264
265
266
267
268
269
270
        super(ColumnParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.gather_output = gather_output
        # Divide the weight matrix along the last dimension.
271
        world_size = get_tensor_model_parallel_world_size()
272
        self.output_size_per_partition = divide(output_size, world_size)
273
        self.skip_bias_add = skip_bias_add
274
275
276
277

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
278
279
        # Initialize weight.
        args = get_args()
280
        if args.use_cpu_initialization:
281
282
283
284
285
286
287
288
289
290
291
292
293
            self.weight = Parameter(torch.empty(self.output_size_per_partition,
                                                self.input_size,
                                                dtype=args.params_dtype))
            self.master_weight = _initialize_affine_weight_cpu(
                self.weight, self.output_size, self.input_size,
                self.output_size_per_partition, 0, init_method,
                stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size_per_partition, self.input_size,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=0, stride=stride)
hwijeen's avatar
hwijeen committed
294

295
        if bias:
296
            if args.use_cpu_initialization:
297
298
299
300
301
302
303
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition, dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition,
                    device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
304
            set_tensor_model_parallel_attributes(self.bias, True, 0, stride)
305
306
307
308
309
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
slym's avatar
slym committed
310
        self.async_tensor_model_parallel_allreduce = (
slym's avatar
slym committed
311
312
                not args.no_async_tensor_model_parallel_allreduce and
                world_size > 1)
313
        self.model_parallel_memory_opt = args.model_parallel_memory_opt
314

315

316
317

    def forward(self, input_):
318
        bias = self.bias if not self.skip_bias_add else None
319

slym's avatar
slym committed
320
        if self.async_tensor_model_parallel_allreduce:
321
322
            input_shape = input_.shape
            input_ = input_.view(input_shape[0] * input_shape[1],input_shape[2])
slym's avatar
slym committed
323
324
            # Maxtrix multiply with asynchronouse all-reduce execution
            output_parallel = ColumnParallelLinearWithAsyncAllreduce.apply(
slym's avatar
slym committed
325
                    input_, self.weight, bias)
326
327
328
329
            output_parallel = output_parallel.view(
                    input_shape[0], input_shape[1], output_parallel.shape[1])
        else:
            # Set up backprop all-reduce.
330
            if self.model_parallel_memory_opt:
331
                input_parallel = gather_from_sequence_parallel_region(input_)
332
333
            else:
                input_parallel = copy_to_tensor_model_parallel_region(input_)
334
335
336
337

            # Matrix multiply.
            output_parallel = F.linear(input_parallel, self.weight, bias)

338
339
        if self.gather_output:
            # All-gather across the partitions.
340
            assert not self.model_parallel_memory_opt
341
            output = gather_from_tensor_model_parallel_region(output_parallel)
342
        else:
hwijeen's avatar
hwijeen committed
343
            output = output_parallel
344
345
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372


class RowParallelLinear(torch.nn.Module):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
hwijeen's avatar
hwijeen committed
373
374
        skip_bias_add: This was added to enable performance optimization where bias
                       can be fused with other elementwise operations. We skip
375
                       adding bias but instead return it.
376
    """
Neel Kant's avatar
Neel Kant committed
377

378
379
380
    def __init__(self, input_size, output_size, bias=True,
                 input_is_parallel=False,
                 init_method=init.xavier_normal_, stride=1,
381
382
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
383
384
385
386
387
388
389
        super(RowParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.input_is_parallel = input_is_parallel
        # Divide the weight matrix along the last dimension.
390
        world_size = get_tensor_model_parallel_world_size()
391
        self.input_size_per_partition = divide(input_size, world_size)
392
        self.skip_bias_add = skip_bias_add
393
394
395
396

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
397
398
        # Initialize weight.
        args = get_args()
399
        if args.use_cpu_initialization:
400
401
402
403
404
405
406
407
408
409
410
411
412
            self.weight = Parameter(torch.empty(self.output_size,
                                                self.input_size_per_partition,
                                                dtype=args.params_dtype))
            self.master_weight = _initialize_affine_weight_cpu(
                self.weight, self.output_size, self.input_size,
                self.input_size_per_partition, 1, init_method,
                stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size, self.input_size_per_partition,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=1, stride=stride)
413
        if bias:
414
            if args.use_cpu_initialization:
415
416
417
418
419
420
                self.bias = Parameter(torch.empty(self.output_size,
                                                  dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size, device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
421
422
423
424
425
426
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)

427
        self.model_parallel_memory_opt = args.model_parallel_memory_opt
428

429
430
431
432
433
434

    def forward(self, input_):
        # Set up backprop all-reduce.
        if self.input_is_parallel:
            input_parallel = input_
        else:
435
            assert not self.model_parallel_memory_opt
436
            input_parallel = scatter_to_tensor_model_parallel_region(input_)
437
438
439
        # Matrix multiply.
        output_parallel = F.linear(input_parallel, self.weight)
        # All-reduce across all the partitions.
440
        if self.model_parallel_memory_opt:
441
            output_ = reduce_scatter_to_sequence_parallel_region(output_parallel)
442
443
        else:
            output_ = reduce_from_tensor_model_parallel_region(output_parallel)
444
445
446
        if not self.skip_bias_add:
            output = output_ + self.bias if self.bias is not None else output_
            output_bias = None
447
448
        else:
            output = output_
449
450
451
            output_bias = self.bias
        return output, output_bias