dialog_dataset.py 5.12 KB
Newer Older
1
2
3
4
5
6
7
8

"""Build Dataset for Controllable Coversational Model"""

import os
import torch
import numpy as np

from megatron import get_tokenizer
9
from megatron import print_rank_0
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

def read_data(tokenizer, data_path, train_module):
    """read and tokenize dialog data"""

    data_list = []
    with open(data_path, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            length_split = len(splits)
            assert length_split == 2 or length_split == 3 or length_split == 4

            if train_module == "dialog":
                dialog_context = splits[0]
                response = splits[-1]
                # only take the last three turns in the dialog context
                turns = dialog_context.split(" [SEP] ")
                turns = turns[-3:]

29
30
31
32
33
34
35
36
                # input_ids
                for idx, turn in enumerate(turns):
                    if idx == 0:
                        input_ids = tokenizer.tokenize(turn)
                    else:
                        input_ids.extend([tokenizer.sep_id] + tokenizer.tokenize(turn))
                
                # output_ids
37
                output_ids = tokenizer.tokenize(response)
38

39
40
41
42
43
44
45
46
47
48
49
50
                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            elif train_module == "control":
                if length_split == 2:
                    continue
                dialog_context = splits[0]
                ctrl_sent = splits[-2]
                ctrl_code = splits[1] if length_split == 4 else None

                turns = dialog_context.split(" [SEP] ")
                last_turn = turns[-1]
                
51
                # input_ids
52
                if ctrl_code:
53
54
55
56
                    input_ids = tokenizer.tokenize(last_turn)
                    ctrl_code_list = ctrl_code.split(" [CTRL] ")
                    for code in ctrl_code_list:
                        input_ids.extend([tokenizer.ctrl_id] + tokenizer.tokenize(code))
57
                else:
58
                    input_ids = tokenizer.tokenize(last_turn)
59

60
61
                # output_ids
                outputs = ctrl_sent
62
                output_ids = tokenizer.tokenize(outputs)
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            else:
                raise ValueError("Please input a correct train-module name! (either dialog or cnotrol))")
    
    return data_list


def data_shuffle(data, seed):
    # set random seed to make the shuffling reproducible
    np.random.seed(seed)
    np.random.shuffle(data)
    return data


class ControlDialogDataset(torch.utils.data.Dataset):

    def __init__(self, data, max_seq_len, pad_id, eod_id):
        # need to deal with padding, label masking
        self.data = data
84
        self.max_seq_len = max_seq_len
85
86
87
88
89
90
91
92
93
94
        self.pad_id = pad_id
        self.eod_id = eod_id

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data_dict = self.data[idx]
        input_ids, output_ids = data_dict["input_ids"], data_dict["output_ids"]
        
95
        assert len(input_ids) < self.max_seq_len, "Set a larger max-seq-len!"
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

        # length_of_loss_mask == length_of_text - 1
        text = input_ids + [self.pad_id] + output_ids + [self.eod_id]
        loss_mask = [0]*len(input_ids) + [1]*(len(output_ids)+1)

        text_len = len(text)
        if text_len > self.max_seq_len:
            text = text[:self.max_seq_len]
            loss_mask = loss_mask[:self.max_seq_len-1]
        else:
            text += [self.pad_id] * (self.max_seq_len - text_len)
            loss_mask += [0] * (self.max_seq_len - text_len)

        return {"text": np.array(text, dtype=np.int64), "loss_mask": np.array(loss_mask, dtype=np.int64)}


def build_train_valid_test_datasets(data_folder, dataset_name, train_module, max_seq_len, seed):
    """Build train, valid, and test datasets."""

    dataname_dict = {"wizard_of_wikipedia": {"train": "train_entity_based_control.txt", "valid": "valid_random_split_entity_based_control.txt", "test": "test_random_split_entity_based_control.txt"}}
    
    train_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["train"])
    valid_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["valid"])
    test_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["test"])

    tokenizer = get_tokenizer()
    train_data_list = read_data(tokenizer, train_data_path, train_module)
    valid_data_list = read_data(tokenizer, valid_data_path, train_module)
    test_data_list = read_data(tokenizer, test_data_path, train_module)

    # shuffle the training data
    train_data_list = data_shuffle(train_data_list, seed)

    # build train, valid, and test datasets
    train_dataset = ControlDialogDataset(train_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id)
    valid_dataset = ControlDialogDataset(valid_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id)
    test_dataset = ControlDialogDataset(test_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id)

134
    return train_dataset, valid_dataset, test_dataset