"""Build Dataset for Controllable Coversational Model""" import os import torch import numpy as np from megatron import get_tokenizer from megatron import print_rank_0 def read_data(tokenizer, data_path, train_module): """read and tokenize dialog data""" data_list = [] with open(data_path, "r") as f: for i, line in enumerate(f): line = line.strip() splits = line.split("\t") length_split = len(splits) assert length_split == 2 or length_split == 3 or length_split == 4 if train_module == "dialog": dialog_context = splits[0] response = splits[-1] # only take the last three turns in the dialog context turns = dialog_context.split(" [SEP] ") turns = turns[-3:] # input_ids for idx, turn in enumerate(turns): if idx == 0: input_ids = tokenizer.tokenize(turn) else: input_ids.extend([tokenizer.sep_id] + tokenizer.tokenize(turn)) # output_ids output_ids = tokenizer.tokenize(response) data_list.append({"input_ids": input_ids, "output_ids": output_ids}) elif train_module == "control": if length_split == 2: continue dialog_context = splits[0] ctrl_sent = splits[-2] ctrl_code = splits[1] if length_split == 4 else None turns = dialog_context.split(" [SEP] ") last_turn = turns[-1] # input_ids if ctrl_code: input_ids = tokenizer.tokenize(last_turn) ctrl_code_list = ctrl_code.split(" [CTRL] ") for code in ctrl_code_list: input_ids.extend([tokenizer.ctrl_id] + tokenizer.tokenize(code)) else: input_ids = tokenizer.tokenize(last_turn) # output_ids outputs = ctrl_sent output_ids = tokenizer.tokenize(outputs) data_list.append({"input_ids": input_ids, "output_ids": output_ids}) else: raise ValueError("Please input a correct train-module name! (either dialog or cnotrol))") return data_list def data_shuffle(data, seed): # set random seed to make the shuffling reproducible np.random.seed(seed) np.random.shuffle(data) return data class ControlDialogDataset(torch.utils.data.Dataset): def __init__(self, data, max_seq_len, pad_id, eod_id): # need to deal with padding, label masking self.data = data self.max_seq_len = max_seq_len self.pad_id = pad_id self.eod_id = eod_id def __len__(self): return len(self.data) def __getitem__(self, idx): data_dict = self.data[idx] input_ids, output_ids = data_dict["input_ids"], data_dict["output_ids"] assert len(input_ids) < self.max_seq_len, "Set a larger max-seq-len!" # length_of_loss_mask == length_of_text - 1 text = input_ids + [self.pad_id] + output_ids + [self.eod_id] loss_mask = [0]*len(input_ids) + [1]*(len(output_ids)+1) text_len = len(text) if text_len > self.max_seq_len: text = text[:self.max_seq_len] loss_mask = loss_mask[:self.max_seq_len-1] else: text += [self.pad_id] * (self.max_seq_len - text_len) loss_mask += [0] * (self.max_seq_len - text_len) return {"text": np.array(text, dtype=np.int64), "loss_mask": np.array(loss_mask, dtype=np.int64)} def build_train_valid_test_datasets(data_folder, dataset_name, train_module, max_seq_len, seed): """Build train, valid, and test datasets.""" dataname_dict = {"wizard_of_wikipedia": {"train": "train_entity_based_control.txt", "valid": "valid_random_split_entity_based_control.txt", "test": "test_random_split_entity_based_control.txt"}} train_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["train"]) valid_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["valid"]) test_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["test"]) tokenizer = get_tokenizer() train_data_list = read_data(tokenizer, train_data_path, train_module) valid_data_list = read_data(tokenizer, valid_data_path, train_module) test_data_list = read_data(tokenizer, test_data_path, train_module) # shuffle the training data train_data_list = data_shuffle(train_data_list, seed) # build train, valid, and test datasets train_dataset = ControlDialogDataset(train_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id) valid_dataset = ControlDialogDataset(valid_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id) test_dataset = ControlDialogDataset(test_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id) return train_dataset, valid_dataset, test_dataset