pretrain_retro.py 8.15 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
2
3
4
5
6
7

"""Pretrain Retro."""

from functools import partial
import torch

xingjinliang's avatar
xingjinliang committed
8
9
10
11
12
13
14
15
16
17
from megatron.training import get_args
from megatron.training import get_timers
from megatron.training import get_tokenizer
from megatron.training import print_rank_0
from megatron.training.arguments import core_transformer_config_from_args
from megatron.core import tensor_parallel
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.utils import get_blend_from_list
from megatron.core.datasets.retro.query.retro_dataset import get_retro_datasets
from megatron.core.datasets.retro.query.multi_split_gpt_dataset import MultiSplitGPTDataset, MultiSplitGPTDatasetConfig
18
from megatron.core.enums import ModelType
xingjinliang's avatar
xingjinliang committed
19
20
from megatron.core.models.retro import get_retro_decoder_block_spec, RetroConfig, RetroModel
from megatron.core.models.retro.utils import get_all_true_mask
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
21
from megatron.training import pretrain
xingjinliang's avatar
xingjinliang committed
22
from megatron.training.utils import get_ltor_masks_and_position_ids
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
23
from pretrain_gpt import (
xingjinliang's avatar
xingjinliang committed
24
    is_dataset_built_on_rank,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
25
    loss_func,
xingjinliang's avatar
xingjinliang committed
26
27
    model_provider as default_model_provider,
    train_valid_test_datasets_provider as gpt_train_valid_test_datasets_provider,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
28
29
30
)


xingjinliang's avatar
xingjinliang committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def get_retro_config():
    return core_transformer_config_from_args(get_args(), RetroConfig)


def core_model_provider(pre_process=True, post_process=True):
    """Build the model using Megatron-Core."""

    args = get_args()
    config = get_retro_config()

    # NOTE: Experimental customization feature
    if args.spec is not None:
        block_spec = import_module(args.spec)()
    else:
        block_spec = get_retro_decoder_block_spec(config, use_transformer_engine=True)

    print_rank_0('building GPT model ...')
    model = RetroModel(
        config=config,
        transformer_layer_spec=block_spec,
        vocab_size=args.padded_vocab_size,
        max_sequence_length=args.max_position_embeddings,
        pre_process=pre_process,
        post_process=post_process,
        fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
        parallel_output=True,
        share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
        position_embedding_type=args.position_embedding_type,
        rotary_percent=args.rotary_percent
    )
    return model


def model_provider(pre_process=True, post_process=True):
    """Build the model.

    Select between two different model classes:
      1. Default model (uses megatron.legacy.models/gpt_model.py).
      2. Core model (uses megatron/core/models/retro/model.py).
    """

    args = get_args()
    if not args.use_legacy_models and args.retro_add_retriever:
        provider = core_model_provider
    else:
        provider = default_model_provider
    model = provider(pre_process=pre_process, post_process=post_process)
    return model


Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
81
82
def get_batch(data_iterator):
    """Generate a batch"""
xingjinliang's avatar
xingjinliang committed
83

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
84
85
    args = get_args()
    tokenizer = get_tokenizer()
xingjinliang's avatar
xingjinliang committed
86
    config = get_retro_config()
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
87
88
89
90

    # Items and their type.
    keys = ['text']
    if args.retro_add_retriever:
xingjinliang's avatar
xingjinliang committed
91
92
        keys.append('neighbor_tokens')
    datatype = torch.int64
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None

    data_b = tensor_parallel.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
        tokens,
        tokenizer.eod,
        args.reset_position_ids,
        args.reset_attention_mask,
        args.eod_mask_loss)

    if args.retro_add_retriever:
xingjinliang's avatar
xingjinliang committed
116
117
118
119
        # note: [bs * l * k, r]
        # note: 2x == neighbor, continuation
        neighbor_tokens = data_b['neighbor_tokens'] \
            .view(-1, config.retro_retrieved_length).long()
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
120
121
122
123
124
125
        _, _, neighbor_position_ids = get_ltor_masks_and_position_ids(
            neighbor_tokens,
            tokenizer.eod,
            args.reset_position_ids,
            args.reset_attention_mask,
            args.eod_mask_loss)
xingjinliang's avatar
xingjinliang committed
126
127
128
        neighbor_attention_mask = get_all_true_mask(
            (1, 1, config.retro_retrieved_length, config.retro_retrieved_length),
            neighbor_tokens.device)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
129
130
        return tokens, labels, loss_mask, attention_mask, position_ids, \
               neighbor_tokens, neighbor_attention_mask, neighbor_position_ids
xingjinliang's avatar
xingjinliang committed
131

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    else:
        return tokens, labels, loss_mask, attention_mask, position_ids


def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    # Get the batch.
    timers('batch-generator').start()
    if args.retro_add_retriever:
        tokens, labels, loss_mask, attention_mask, position_ids, \
            neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
                get_batch(data_iterator)
    else:
        tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
            data_iterator)
        neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
            None, None, None
    timers('batch-generator').stop()

xingjinliang's avatar
xingjinliang committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    # Model call.
    if args.use_legacy_models:
        forward_kwargs = {
            "retriever_input_ids" : neighbor_tokens,
            "retriever_position_ids" : neighbor_position_ids,
            "retriever_attn_mask" : neighbor_attention_mask,
        }
    else:
        if args.retro_add_retriever:
            forward_kwargs = {
                "context_input_ids" : neighbor_tokens,
                "context_position_ids" : neighbor_position_ids,
                "context_mask" : neighbor_attention_mask,
            }
        else:
            forward_kwargs = {}
 
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
171
    output_tensor = model(tokens, position_ids, attention_mask,
xingjinliang's avatar
xingjinliang committed
172
                          labels=labels, **forward_kwargs)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
173
174
175
176

    return output_tensor, partial(loss_func, loss_mask)


xingjinliang's avatar
xingjinliang committed
177
def train_valid_test_datasets_provider(train_valid_test_num_samples):
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
178
179
    """Build train, valid, and test datasets."""
    args = get_args()
xingjinliang's avatar
xingjinliang committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    # Dataset config.
    retro_config = get_retro_config()
    data_config = MultiSplitGPTDatasetConfig(
        random_seed=args.seed,
        sequence_length=args.seq_length,
        blend=get_blend_from_list(args.data_path),
        blend_per_split=[
            get_blend_from_list(args.train_data_path),
            get_blend_from_list(args.valid_data_path),
            get_blend_from_list(args.test_data_path)
        ],
        renormalize_blend_weights=args.renormalize_blend_weights,
        split=args.split,
        split_preprocessing=retro_config.retro_split_preprocessing,
        path_to_cache=args.data_cache_path,
        return_document_ids=False,
        tokenizer=get_tokenizer(),
        reset_position_ids=args.reset_position_ids,
        reset_attention_mask=args.reset_attention_mask,
        eod_mask_loss=args.eod_mask_loss,
    )

    # GPT datasets.
    print_rank_0(" > multi-split gpt datasets.")
    train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
        MultiSplitGPTDataset,
        train_valid_test_num_samples,
        is_dataset_built_on_rank,
        data_config,
    ).build()

    gpt_datasets = {
        "train" : (train_ds, train_valid_test_num_samples[0]),
        "valid" : (valid_ds, train_valid_test_num_samples[1]),
        "test"  : (test_ds, train_valid_test_num_samples[2]),
    }

    # Retro datasets.
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
219
    if args.retro_add_retriever:
xingjinliang's avatar
xingjinliang committed
220
221
222
223
224
225
226
227
        return get_retro_datasets(
            config=retro_config,
            gpt_datasets=gpt_datasets,
            sample_length=args.seq_length,
            eod_token_id=get_tokenizer().eod,
        )

    # Multi-split GPT datasets.
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
228
    else:
xingjinliang's avatar
xingjinliang committed
229
230
231
232
233
        return (
            gpt_datasets["train"][0],
            gpt_datasets["valid"][0],
            gpt_datasets["test"][0],
        )
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
234
235
236
237


if __name__ == "__main__":

xingjinliang's avatar
xingjinliang committed
238
239
240
    # Temporary for transition to core datasets.
    train_valid_test_datasets_provider.is_distributed = True

liangjing's avatar
v1  
liangjing committed
241
242
243
244
    pretrain(train_valid_test_datasets_provider,
             model_provider,
             ModelType.retro_decoder,
             forward_step,
xingjinliang's avatar
xingjinliang committed
245
             args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})