pretrain_retro.py 3.77 KB
Newer Older
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

"""Pretrain Retro."""

from functools import partial
import torch

from megatron import get_args, get_retro_args
from megatron import get_timers
from megatron import get_tokenizer
from megatron import print_rank_0
from megatron.core import mpu, tensor_parallel
13
14
from megatron.core.enums import ModelType
from megatron.model import GPTModel
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from megatron.training import pretrain
from megatron.utils import get_ltor_masks_and_position_ids
from tools.retro.pretraining.retro_dataset import get_retro_datasets

from pretrain_gpt import (
    loss_func,
    model_provider,
    train_valid_test_datasets_provider as standard_datasets_provider,
)


def get_batch(data_iterator):
    """Generate a batch"""
    args = get_args()
    retro_args = get_retro_args()
    tokenizer = get_tokenizer()

    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    if args.retro_add_retriever:
        keys += 'neighbor_tokens',

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None

    data_b = tensor_parallel.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    if args.retro_add_retriever:
        # note: [bs * l * k, r]
        # note: 2x == neighbor, continuation
        neighbor_tokens = data_b['neighbor_tokens'] \
            .view(-1, retro_args.retro_gpt_retrieved_length).long()

    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
        tokens,
        tokenizer.eod,
        args.reset_position_ids,
        args.reset_attention_mask,
        args.eod_mask_loss)

    if args.retro_add_retriever:
        _, _, neighbor_position_ids = get_ltor_masks_and_position_ids(
            neighbor_tokens,
            tokenizer.eod,
            args.reset_position_ids,
            args.reset_attention_mask,
            args.eod_mask_loss)
        neighbor_attention_mask = None
        return tokens, labels, loss_mask, attention_mask, position_ids, \
               neighbor_tokens, neighbor_attention_mask, neighbor_position_ids
    else:
        return tokens, labels, loss_mask, attention_mask, position_ids


def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    # Get the batch.
    timers('batch-generator').start()
    if args.retro_add_retriever:
        tokens, labels, loss_mask, attention_mask, position_ids, \
            neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
                get_batch(data_iterator)
    else:
        tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
            data_iterator)
        neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
            None, None, None
    timers('batch-generator').stop()

    output_tensor = model(tokens, position_ids, attention_mask,
                          ret_input_ids=neighbor_tokens,
                          ret_position_ids=neighbor_position_ids,
                          ret_attn_mask=neighbor_attention_mask,
                          labels=labels)

    return output_tensor, partial(loss_func, loss_mask)


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()
    if args.retro_add_retriever:
        return get_retro_datasets()
    else:
        return standard_datasets_provider(train_val_test_num_samples)


if __name__ == "__main__":

    pretrain(train_valid_test_datasets_provider, model_provider,
             ModelType.encoder_or_decoder,
             forward_step, args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})