text_generation_server.py 9.89 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
import datetime
import json
xingjinliang's avatar
xingjinliang committed
4
5

from flask import Flask, request, jsonify
rprenger's avatar
rprenger committed
6
from flask_restful import Resource, Api
mshoeybi's avatar
mshoeybi committed
7

xingjinliang's avatar
xingjinliang committed
8
9
10
11
from megatron.inference.text_generation import generate_and_post_process
from megatron.inference.text_generation import beam_search_and_post_process
from megatron.inference.endpoints.common import send_do_generate, send_do_beam_search, LOCK
from megatron.inference.endpoints.completions import MegatronCompletions
rprenger's avatar
rprenger committed
12
13
14
15
16


class MegatronGenerate(Resource):
    def __init__(self, model):
        self.model = model
17

rprenger's avatar
rprenger committed
18
    def put(self):
19
20
        if not "prompts" in request.get_json():
            return "prompts argument required", 400
xingjinliang's avatar
xingjinliang committed
21

22
23
        if "max_len" in request.get_json():
            return "max_len is no longer used.  Replace with tokens_to_generate", 400
xingjinliang's avatar
xingjinliang committed
24

25
26
27
28
        if "sentences" in request.get_json():
            return "sentences is no longer used.  Replace with prompts", 400

        prompts = request.get_json()["prompts"]
29
30
31
32
33
        if not isinstance(prompts, list):
            return "prompts is not a list of strings", 400

        if len(prompts) == 0:
            return "prompts is empty", 400
xingjinliang's avatar
xingjinliang committed
34

35
36
        if len(prompts) > 128:
            return "Maximum number of prompts is 128", 400
xingjinliang's avatar
xingjinliang committed
37

38
39
40
41
42
        tokens_to_generate = 64  # Choosing hopefully sane default.  Full sequence is slow
        if "tokens_to_generate" in request.get_json():
            tokens_to_generate = request.get_json()["tokens_to_generate"]
            if not isinstance(tokens_to_generate, int):
                return "tokens_to_generate must be an integer greater than 0"
43
44
            if tokens_to_generate < 0:
                return "tokens_to_generate must be an integer greater than or equal to 0"
rprenger's avatar
rprenger committed
45

46
47
48
49
50
        logprobs = False
        if "logprobs" in request.get_json():
            logprobs = request.get_json()["logprobs"]
            if not isinstance(logprobs, bool):
                return "logprobs must be a boolean value"
xingjinliang's avatar
xingjinliang committed
51

52
53
        if tokens_to_generate == 0 and not logprobs:
            return "tokens_to_generate=0 implies logprobs should be True"
xingjinliang's avatar
xingjinliang committed
54

55
        temperature = 1.0
56
57
        if "temperature" in request.get_json():
            temperature = request.get_json()["temperature"]
xingjinliang's avatar
xingjinliang committed
58
59
            if not (isinstance(temperature, (int, float))):
                return "temperature must be a positive number less than or equal to 1000.0"
60
61
            if not (0.0 < temperature <= 100.0):
                return "temperature must be a positive number less than or equal to 100.0"
xingjinliang's avatar
xingjinliang committed
62
63

        top_k = 0
64
65
        if "top_k" in request.get_json():
            top_k = request.get_json()["top_k"]
xingjinliang's avatar
xingjinliang committed
66
            if not (isinstance(top_k, int)):
67
                return "top_k must be an integer equal to or greater than 0 and less than or equal to 1000"
68
            if not (0 <= top_k <= 1000):
69
                return "top_k must be equal to or greater than 0 and less than or equal to 1000"
xingjinliang's avatar
xingjinliang committed
70

71
        top_p = 0.0
72
73
        if "top_p" in request.get_json():
            top_p = request.get_json()["top_p"]
xingjinliang's avatar
xingjinliang committed
74
            if not (isinstance(top_p, float)):
75
                return "top_p must be a positive float less than or equal to 1.0"
76
77
            if top_p > 0.0 and top_k > 0.0:
                return "cannot set both top-k and top-p samplings."
78
            if not (0 <= top_p <= 1.0):
79
                return "top_p must be less than or equal to 1.0"
xingjinliang's avatar
xingjinliang committed
80

81
82
83
        top_p_decay = 0.0
        if "top_p_decay" in request.get_json():
            top_p_decay = request.get_json()["top_p_decay"]
xingjinliang's avatar
xingjinliang committed
84
            if not (isinstance(top_p_decay, float)):
85
                return "top_p_decay must be a positive float less than or equal to 1.0"
86
            if top_p == 0.0:
87
88
89
                return "top_p_decay cannot be set without top_p"
            if not (0 <= top_p_decay <= 1.0):
                return "top_p_decay must be less than or equal to 1.0"
xingjinliang's avatar
xingjinliang committed
90

91
92
93
        top_p_bound = 0.0
        if "top_p_bound" in request.get_json():
            top_p_bound = request.get_json()["top_p_bound"]
xingjinliang's avatar
xingjinliang committed
94
            if not (isinstance(top_p_bound, float)):
95
                return "top_p_bound must be a positive float less than or equal to top_p"
96
            if top_p == 0.0:
97
98
99
                return "top_p_bound cannot be set without top_p"
            if not (0.0 < top_p_bound <= top_p):
                return "top_p_bound must be greater than 0 and less than top_p"
xingjinliang's avatar
xingjinliang committed
100

101
102
103
104
105
        add_BOS = False
        if "add_BOS" in request.get_json():
            add_BOS = request.get_json()["add_BOS"]
            if not isinstance(add_BOS, bool):
                return "add_BOS must be a boolean value"
xingjinliang's avatar
xingjinliang committed
106

107
108
109
110
111
112
113
114
        if any([len(prompt) == 0 for prompt in prompts]) and not add_BOS:
            return "Empty prompts require add_BOS=true"

        stop_on_double_eol = False
        if "stop_on_double_eol" in request.get_json():
            stop_on_double_eol = request.get_json()["stop_on_double_eol"]
            if not isinstance(stop_on_double_eol, bool):
                return "stop_on_double_eol must be a boolean value"
xingjinliang's avatar
xingjinliang committed
115

116
117
118
119
120
121
        stop_on_eol = False
        if "stop_on_eol" in request.get_json():
            stop_on_eol = request.get_json()["stop_on_eol"]
            if not isinstance(stop_on_eol, bool):
                return "stop_on_eol must be a boolean value"

Peng Xu's avatar
Peng Xu committed
122
123
124
125
126
127
        prevent_newline_after_colon = False
        if "prevent_newline_after_colon" in request.get_json():
            prevent_newline_after_colon = request.get_json()["prevent_newline_after_colon"]
            if not isinstance(prevent_newline_after_colon, bool):
                return "prevent_newline_after_colon must be a boolean value"

128
129
130
131
132
        random_seed = -1
        if "random_seed" in request.get_json():
            random_seed = request.get_json()["random_seed"]
            if not isinstance(random_seed, int):
                return "random_seed must be integer"
xingjinliang's avatar
xingjinliang committed
133
            if random_seed < 0:
134
135
                return "random_seed must be a positive integer"

rprenger's avatar
rprenger committed
136
137
138
139
140
        no_log = False
        if "no_log" in request.get_json():
            no_log = request.get_json()["no_log"]
            if not isinstance(no_log, bool):
                return "no_log must be a boolean value"
xingjinliang's avatar
xingjinliang committed
141

142
143
144
145
146
147
148
149
150
        beam_width = None
        if "beam_width" in request.get_json():
            beam_width = request.get_json()["beam_width"]
            if not isinstance(beam_width, int):
                return "beam_width must be integer"
            if beam_width < 1:
                return "beam_width must be an integer > 1"
            if len(prompts) > 1:
                return "When doing beam_search, batch size must be 1"
rprenger's avatar
rprenger committed
151

xingjinliang's avatar
xingjinliang committed
152
        stop_token = 50256
153
154
155
156
        if "stop_token" in request.get_json():
            stop_token = request.get_json()["stop_token"]
            if not isinstance(stop_token, int):
                return "stop_token must be an integer"
xingjinliang's avatar
xingjinliang committed
157
158

        length_penalty = 1
159
160
161
162
        if "length_penalty" in request.get_json():
            length_penalty = request.get_json()["length_penalty"]
            if not isinstance(length_penalty, float):
                return "length_penalty must be a float"
xingjinliang's avatar
xingjinliang committed
163
164
165

        with LOCK:  # Need to get lock to keep multiple threads from hitting code

rprenger's avatar
rprenger committed
166
167
            if not no_log:
                print("request IP: " + str(request.remote_addr))
xingjinliang's avatar
xingjinliang committed
168
                print(json.dumps(request.get_json()), flush=True)
rprenger's avatar
rprenger committed
169
                print("start time: ", datetime.datetime.now())
xingjinliang's avatar
xingjinliang committed
170

171
            try:
172
                if beam_width is not None:
xingjinliang's avatar
xingjinliang committed
173
174
                    send_do_beam_search()  # Tell other ranks we're doing beam_search
                    response, response_seg, response_scores = beam_search_and_post_process(
rprenger's avatar
rprenger committed
175
176
177
                        self.model,
                        prompts=prompts,
                        tokens_to_generate=tokens_to_generate,
xingjinliang's avatar
xingjinliang committed
178
                        beam_size=beam_width,
179
180
181
                        add_BOS=add_BOS,
                        stop_token=stop_token,
                        num_return_gen=beam_width,  # Returning whole beam
Peng Xu's avatar
Peng Xu committed
182
                        length_penalty=length_penalty,
xingjinliang's avatar
xingjinliang committed
183
184
185
186
187
188
                        prevent_newline_after_colon=prevent_newline_after_colon,
                    )

                    return jsonify(
                        {"text": response, "segments": response_seg, "scores": response_scores}
                    )
rprenger's avatar
rprenger committed
189
                else:
xingjinliang's avatar
xingjinliang committed
190
191
                    send_do_generate()  # Tell other ranks we're doing generate
                    result = generate_and_post_process(
192
193
194
195
196
197
                        self.model,
                        prompts=prompts,
                        tokens_to_generate=tokens_to_generate,
                        return_output_log_probs=logprobs,
                        top_k_sampling=top_k,
                        top_p_sampling=top_p,
198
199
                        top_p_decay=top_p_decay,
                        top_p_bound=top_p_bound,
200
201
                        temperature=temperature,
                        add_BOS=add_BOS,
202
203
                        use_eod_token_for_early_termination=True,
                        stop_on_double_eol=stop_on_double_eol,
204
                        stop_on_eol=stop_on_eol,
Peng Xu's avatar
Peng Xu committed
205
                        prevent_newline_after_colon=prevent_newline_after_colon,
xingjinliang's avatar
xingjinliang committed
206
207
                        random_seed=random_seed,
                    )
rprenger's avatar
rprenger committed
208

xingjinliang's avatar
xingjinliang committed
209
210
211
                    response, response_seg, response_logprobs = result[:3]
                    response = {
                        "text": response,
rprenger's avatar
rprenger committed
212
                        "segments": response_seg,
xingjinliang's avatar
xingjinliang committed
213
214
215
216
                        "logprobs": response_logprobs,
                    }

                    return jsonify(response)
rprenger's avatar
rprenger committed
217

218
            except ValueError as ve:
219
                return ve.args[0]
220
            print("end time: ", datetime.datetime.now())
xingjinliang's avatar
xingjinliang committed
221

rprenger's avatar
rprenger committed
222
223
224

class MegatronServer(object):
    def __init__(self, model):
225
        self.app = Flask(__name__, static_url_path='')
rprenger's avatar
rprenger committed
226
        api = Api(self.app)
227
        api.add_resource(MegatronGenerate, '/api', resource_class_args=[model])
xingjinliang's avatar
xingjinliang committed
228
229
230
        api.add_resource(MegatronCompletions, '/completions', resource_class_args=[model])

    def run(self, url, port):
liangjing's avatar
v1  
liangjing committed
231
        self.app.run(url, threaded=True, debug=False, port=port)