indexer.py 9.31 KB
Newer Older
1
import os
2
import sys
3
4
import time

Neel Kant's avatar
Neel Kant committed
5
import torch
6
import torch.distributed as dist
Neel Kant's avatar
Neel Kant committed
7
8
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

9
from megatron import get_args, get_adlr_autoresume, print_rank_0
Neel Kant's avatar
Neel Kant committed
10
11
12
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
13
from megatron.data.realm_dataset import ICTDataset
14
from megatron.data.realm_index import detach, BlockData, FaissMIPSIndex
Neel Kant's avatar
Neel Kant committed
15
16
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
Neel Kant's avatar
Neel Kant committed
17
from megatron.model import REALMRetriever
18
19
20
21
from megatron.global_vars import set_global_variables
from megatron.mpu.initialize import get_index_ready, get_index_group, get_train_group
from megatron.mpu.initialize import set_data_parallel_group, set_model_parallel_group, init_realm_groups
from megatron.initialize import init_distributed, _init_autoresume, _set_random_seed, _write_args_to_tensorboard
Neel Kant's avatar
Neel Kant committed
22
from megatron.training import get_model
23
from megatron.utils import check_adlr_autoresume_termination
Neel Kant's avatar
Neel Kant committed
24
25
26
from pretrain_bert_ict import get_batch, model_provider


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
INDEX_READY = None


def pprint(*args):
    print(*args, flush=True)


def initialize_and_run_async_megatron(extra_args_provider=None, args_defaults={},
                                      ignore_unknown_args=False, allow_no_cuda=False):
    if not allow_no_cuda:
        # Make sure cuda is available.
        assert torch.cuda.is_available(), 'Megatron requires CUDA.'

    # Parse args, build tokenizer, and set adlr-autoresume,
    # tensorboard-writer, and timers.
    set_global_variables(extra_args_provider=extra_args_provider,
                         args_defaults=args_defaults,
                         ignore_unknown_args=ignore_unknown_args)

    # instead of _initialize_distributed()
    init_distributed()
    setup_realm_groups_and_vars()
    global INDEX_READY
    INDEX_READY = get_index_ready()
    pprint('finished setting up groups')

    # Autoresume
    _init_autoresume()
    pprint('finished setting up autoresume')

    # Random seeds for reproducibility.
Neel Kant's avatar
Neel Kant committed
58
    args = get_args()
59
60
61
    if args.rank == 0:
        pprint('> setting random seeds to {} ...'.format(args.seed))
    _set_random_seed(args.seed)
Neel Kant's avatar
Neel Kant committed
62

63
64
65
    # Write arguments to tensorboard.
    _write_args_to_tensorboard()
    pprint('finished writing args to tensorboard')
Neel Kant's avatar
Neel Kant committed
66

67
    torch.distributed.barrier()
Neel Kant's avatar
Neel Kant committed
68

69
70
71
72
73
74
75
76
77
    if args.rank < args.max_training_rank:
        torch.distributed.barrier(get_train_group())
        pprint("All trainers ready.")
        return
    else:
        runner = AsyncIndexBuilder(args.rank)
        torch.distributed.barrier(get_index_group())
        pprint("All indexers ready.")
        runner.run_async()
Neel Kant's avatar
Neel Kant committed
78
79


80
def setup_realm_groups_and_vars():
Neel Kant's avatar
Neel Kant committed
81
    args = get_args()
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    world_size = dist.get_world_size()
    max_training_rank = args.max_training_rank

    # assuming no model parallelism right now
    set_model_parallel_group(dist.new_group([args.rank]))
    init_realm_groups(max_training_rank, world_size)

    if args.rank < max_training_rank:
        set_data_parallel_group(get_train_group())
    else:
        set_data_parallel_group(get_index_group())


class AsyncIndexBuilder(object):
    def __init__(self, rank):
        self.rank = rank
        args = get_args()
        self.is_main_builder = self.rank == args.max_training_rank
        self.main_builder_idx = args.max_training_rank
        self.debug = args.debug

        self.model = None
        self.dataloader = None
        self.block_data = None
        self.load_attributes()

        global INDEX_READY
        INDEX_READY = get_index_ready()

    def run_async(self):
        while True:
            print("Starting (again!)")
            self.build_index()
            self.save_index()
            self.send_index_ready_signal()
            while INDEX_READY == 1:
                print("Waiting for new model checkpoint.")
                time.sleep(1)

            self.load_model()

    def load_attributes(self):
Neel Kant's avatar
Neel Kant committed
124
        try:
125
            self.model = load_ict_checkpoint(only_block_model=True, no_grad=True, from_realm_chkpt=True)
Neel Kant's avatar
Neel Kant committed
126
        except:
127
128
129
130
            self.model = load_ict_checkpoint(only_block_model=True, no_grad=True, from_realm_chkpt=False)
        self.model.eval()
        self.dataloader = iter(get_one_epoch_dataloader(get_ict_dataset()))
        self.block_data = BlockData()
131

132
    def build_index(self):
133
134
135
136
137
138
        i = 1
        total = 0
        while True:
            with torch.no_grad():
                try:
                    query_tokens, query_pad_mask, \
139
                    block_tokens, block_pad_mask, block_index_data = get_batch(self.dataloader)
140
                except:
141
142
                    break

143
144
145
146
                block_index_data = detach(block_index_data)
                block_indices = block_index_data[:, 3]
                block_meta = block_index_data[:, :3]

147
148
                block_logits = detach(self.model(None, None, block_tokens, block_pad_mask, only_block=True))
                self.block_data.add_block_data(block_indices, block_logits, block_meta)
149
150
151

                total += block_indices.size
                i += 1
Neel Kant's avatar
Neel Kant committed
152
                if i % 2000 == 0:
153
                    print('Batch {:10d} | Total {:10d}'.format(i, total), flush=True)
154
                    if self.debug:
155
156
                        break

157
158
159
160
161
162
163
164
                autoresume = get_adlr_autoresume()
                if autoresume.termination_requested():
                    print_rank_0(">>> autoresume termination request found!")
                    if torch.distributed.get_rank() == 0:
                        autoresume.request_resume()
                    print_rank_0(">>> training terminated. Returning")
                    sys.exit(0)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def save_index(self):
        self.block_data.save_shard(self.rank)
        torch.distributed.barrier()
        del self.model

        if self.is_main_builder:
            self.block_data.consolidate_shards_and_save(ignore_shard=self.rank)
        else:
            self.block_data.clear()

    def send_index_ready_signal(self):
        global INDEX_READY
        if self.is_main_builder:
            INDEX_READY = 1 - INDEX_READY
            print("Switched INDEX_READY", flush=True)
        send_handle = dist.broadcast(INDEX_READY, self.main_builder_idx, async_op=True)

        torch.distributed.barrier(get_index_group())
        recv_handle = dist.broadcast(INDEX_READY, 0, async_op=True)
184
185
186


def load_ict_checkpoint(only_query_model=False, only_block_model=False, no_grad=False, from_realm_chkpt=False):
Neel Kant's avatar
Neel Kant committed
187
    args = get_args()
Neel Kant's avatar
Neel Kant committed
188
    model = get_model(lambda: model_provider(only_query_model, only_block_model))
Neel Kant's avatar
Neel Kant committed
189
190
191

    if isinstance(model, torchDDP):
        model = model.module
192
193
194

    load_path = args.load if from_realm_chkpt else args.ict_load

195
    tracker_filename = get_checkpoint_tracker_filename(load_path)
Neel Kant's avatar
Neel Kant committed
196
197
198
199
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
200
    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
Neel Kant's avatar
Neel Kant committed
201
202
203
204
205
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
206
207
208
209
    ict_state_dict = state_dict['model']
    if from_realm_chkpt:
        ict_state_dict = ict_state_dict['retriever']['ict_model']

Neel Kant's avatar
Neel Kant committed
210
    if only_query_model:
211
        ict_state_dict.pop('context_model')
Neel Kant's avatar
Neel Kant committed
212
    if only_block_model:
213
        ict_state_dict.pop('question_model')
Neel Kant's avatar
Neel Kant committed
214
215
    if no_grad:
        with torch.no_grad():
216
            model.load_state_dict(ict_state_dict)
Neel Kant's avatar
Neel Kant committed
217
    else:
218
        model.load_state_dict(ict_state_dict)
Neel Kant's avatar
Neel Kant committed
219
220
221
222
223
224
225
226
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


227
def get_ict_dataset(use_titles=True):
Neel Kant's avatar
Neel Kant committed
228
    args = get_args()
Neel Kant's avatar
Neel Kant committed
229
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
230
    titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
231
232
233

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
234
235
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
236
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
237
238
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
239
240
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
241
        seed=1,
Neel Kant's avatar
Neel Kant committed
242
        query_in_block_prob=1,
243
        use_titles=use_titles
Neel Kant's avatar
Neel Kant committed
244
    )
245
    dataset = ICTDataset(**kwargs)
Neel Kant's avatar
Neel Kant committed
246
247
248
    return dataset


Neel Kant's avatar
Neel Kant committed
249
def get_one_epoch_dataloader(dataset):
Neel Kant's avatar
Neel Kant committed
250
251
252
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
253
    print(world_size, flush=True)
Neel Kant's avatar
Neel Kant committed
254
    rank = mpu.get_data_parallel_rank()
255
    print(rank, flush=True)
Neel Kant's avatar
Neel Kant committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
273
    main()