indexer.py 7.96 KB
Newer Older
1
import os
2
import sys
3
4
import time

Neel Kant's avatar
Neel Kant committed
5
6
7
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

8
from megatron import get_args, get_adlr_autoresume, print_rank_0
Neel Kant's avatar
Neel Kant committed
9
10
11
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
12
from megatron.data.realm_dataset import ICTDataset
13
from megatron.data.realm_index import detach, BlockData, FaissMIPSIndex
Neel Kant's avatar
Neel Kant committed
14
15
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
Neel Kant's avatar
Neel Kant committed
16
from megatron.model import REALMRetriever
Neel Kant's avatar
Neel Kant committed
17
from megatron.training import get_model
18
from megatron.utils import check_adlr_autoresume_termination
Neel Kant's avatar
Neel Kant committed
19
from pretrain_bert_ict import get_batch, model_provider
Neel Kant's avatar
Neel Kant committed
20
from indexer_utils import set_index_com_file_ready, set_model_com_file_not_ready, check_model_com_file_ready
Neel Kant's avatar
Neel Kant committed
21
22


Neel Kant's avatar
Neel Kant committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# TODO re: main()
# consider broadcasting/all-reducing all in memory rather than using the filesystem
# create a different process group in the same nccl world - don't have to use chkpts on disc or transfer things on disc
# torch distributed new group, constains a list of rank, gives back a group which I can hand to the collective operations
# create a training process group, indexing process group
# pass the training group to the distributed DDP, instead of the large world process group
# use indexing process group for the shard-combining
# communication group between process "8" and process "0" which tells training group that there's a new index
# also, process 0 sends process 8 the new model

# if i want to launch a separate process for indexing, may have to work with environment variables to
# allocate the resources well. Have to subsequently assign the correct gpus to the indexing job
# consider initializing everything in a single group and break off processes based on the ranks

# for debugging purposes, make it so that the training process group checks every some number of intervals
# and if it isn't ready, then wait so that it's consistent. Start with using the filesystem

Neel Kant's avatar
Neel Kant committed
40
def test_retriever():
41
    # TODO: Update this because it's outdated and definitely won't run.
Neel Kant's avatar
Neel Kant committed
42
43
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
Neel Kant's avatar
Neel Kant committed
44
    args = get_args()
45
    model = load_ict_checkpoint()
Neel Kant's avatar
Neel Kant committed
46
    model.eval()
Neel Kant's avatar
Neel Kant committed
47
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
48
49
50
51

    block_data = BlockData.load_from_file(args.block_data_path)
    mips_index = FaissMIPSIndex('flat_ip', 128)
    mips_index.add_block_embed_data(block_data)
52
    retriever = REALMRetriever(model, dataset, block_data, mips_index, top_k=5)
Neel Kant's avatar
Neel Kant committed
53
54
55
56
57
58
59
60
61
62

    strs = [
        "The last monarch from the house of windsor",
        "married to Elvis Presley",
        "tallest building in the world today",
        "who makes graphics cards"
    ]

    for s in strs:
        retriever.retrieve_evidence_blocks_text(s)
Neel Kant's avatar
Neel Kant committed
63
64


Neel Kant's avatar
Neel Kant committed
65
def main():
Neel Kant's avatar
Neel Kant committed
66
67
68
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
69
    ran_once = False
Neel Kant's avatar
Neel Kant committed
70
    while True:
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        model = load_ict_checkpoint(only_block_model=True, no_grad=True, from_realm_chkpt=ran_once)
        model.eval()
        dataset = get_ict_dataset()
        data_iter = iter(get_one_epoch_dataloader(dataset))
        all_block_data = BlockData()

        i = 1
        total = 0
        while True:
            with torch.no_grad():
                try:
                    query_tokens, query_pad_mask, \
                    block_tokens, block_pad_mask, block_index_data = get_batch(data_iter)
                except:
85
86
                    break

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
                block_index_data = detach(block_index_data)
                block_indices = block_index_data[:, 3]
                block_meta = block_index_data[:, :3]

                block_logits = detach(model(None, None, block_tokens, block_pad_mask, only_block=True))
                all_block_data.add_block_data(block_indices, block_logits, block_meta)

                total += block_indices.size
                i += 1
                if i % 20 == 0:
                    print('Batch {:10d} | Total {:10d}'.format(i, total), flush=True)
                    if args.debug:
                        break

        all_block_data.save_shard(args.rank)
        torch.distributed.barrier()
        del model

        if args.rank == 0:
            all_block_data.consolidate_shards_and_save()
        else:
            all_block_data.clear()

        ran_once = True
        set_index_com_file_ready()
        torch.distributed.barrier()
113
114
115
116
117
118
119
120
121
122
123
124
        if args.async_indexer:
            while not check_model_com_file_ready():
                time.sleep(5)
                autoresume = get_adlr_autoresume()
                if autoresume.termination_requested():
                    print_rank_0(">>> autoresume termination request found!")
                    if torch.distributed.get_rank() == 0:
                        autoresume.request_resume()
                    print_rank_0(">>> training terminated. Returning")
                    sys.exit(0)

            set_model_com_file_not_ready()
125
126
127


def load_ict_checkpoint(only_query_model=False, only_block_model=False, no_grad=False, from_realm_chkpt=False):
Neel Kant's avatar
Neel Kant committed
128
    args = get_args()
Neel Kant's avatar
Neel Kant committed
129
    model = get_model(lambda: model_provider(only_query_model, only_block_model))
Neel Kant's avatar
Neel Kant committed
130

131
132
    load_path = args.load if from_realm_chkpt else args.ict_load

Neel Kant's avatar
Neel Kant committed
133
134
    if isinstance(model, torchDDP):
        model = model.module
135
    tracker_filename = get_checkpoint_tracker_filename(load_path)
Neel Kant's avatar
Neel Kant committed
136
137
138
139
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
140
    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
Neel Kant's avatar
Neel Kant committed
141
142
143
144
145
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
146
147
148
149
    ict_state_dict = state_dict['model']
    if from_realm_chkpt:
        ict_state_dict = ict_state_dict['retriever']['ict_model']

Neel Kant's avatar
Neel Kant committed
150
    if only_query_model:
151
        ict_state_dict.pop('context_model')
Neel Kant's avatar
Neel Kant committed
152
    if only_block_model:
153
        ict_state_dict.pop('question_model')
Neel Kant's avatar
Neel Kant committed
154
155
    if no_grad:
        with torch.no_grad():
156
            model.load_state_dict(ict_state_dict)
Neel Kant's avatar
Neel Kant committed
157
    else:
158
        model.load_state_dict(ict_state_dict)
Neel Kant's avatar
Neel Kant committed
159
160
161
162
163
164
165
166
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


167
def get_ict_dataset(use_titles=True):
Neel Kant's avatar
Neel Kant committed
168
    args = get_args()
Neel Kant's avatar
Neel Kant committed
169
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
170
    titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
171
172
173

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
174
175
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
176
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
177
178
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
179
180
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
181
        seed=1,
Neel Kant's avatar
Neel Kant committed
182
        query_in_block_prob=1,
183
        use_titles=use_titles
Neel Kant's avatar
Neel Kant committed
184
    )
185
    dataset = ICTDataset(**kwargs)
Neel Kant's avatar
Neel Kant committed
186
187
188
    return dataset


Neel Kant's avatar
Neel Kant committed
189
def get_one_epoch_dataloader(dataset):
Neel Kant's avatar
Neel Kant committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
211
    main()