clip_grads.py 5.56 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Gradient clipping."""

import torch
from torch._six import inf

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
24
25
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
mohammad's avatar
mohammad committed
26
27


28
29
def clip_grad_norm_fp32(parameters, grads_for_norm,
                        max_norm, norm_type=2,
Lawrence McAfee's avatar
Lawrence McAfee committed
30
                        model_parallel_group=None):
mohammad's avatar
mohammad committed
31
32
33
34
35
36
37
38
39
40
    """Clips gradient norm of an iterable of parameters whose gradients
       are in fp32.

    This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
    added functionality to handle model parallel parameters. Note that
    the gradients are modified in place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
Lawrence McAfee's avatar
Lawrence McAfee committed
41
42
        grads_for_norm (Iterable[Tensor]): an iterable of Tensors or a single
            Tensor that will be used for calculating the grad norm.
mohammad's avatar
mohammad committed
43
44
45
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.
Lawrence McAfee's avatar
Lawrence McAfee committed
46
        model_parallel_group (group): given the nature of the distributed
47
            optimizer, this is passed as an argument.
mohammad's avatar
mohammad committed
48
49
50
51
52
53
54

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
Lawrence McAfee's avatar
Lawrence McAfee committed
55
56
    if isinstance(grads_for_norm, torch.Tensor):
        grads_for_norm = [grads_for_norm]
mohammad's avatar
mohammad committed
57

58
    # Grads.
59
60
61
62
63
    grads = []
    for param in parameters:
        if param.grad is not None:
            assert param.grad.type() == 'torch.cuda.FloatTensor'
            grads.append(param.grad.detach())
64

mohammad's avatar
mohammad committed
65
66
67
68
69
70
71
72
73
74
75
76
    # Norm parameters.
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    total_norm = 0.0

    # Calculate norm.
    if norm_type == inf:
        total_norm = max(grad.abs().max() for grad in grads_for_norm)
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
        # Take max across all model-parallel GPUs.
        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.MAX,
77
                                     group=model_parallel_group)
mohammad's avatar
mohammad committed
78
79
80
81
82
        total_norm = total_norm_cuda[0].item()

    else:
        if norm_type == 2.0:
            dummy_overflow_buf = torch.cuda.IntTensor([0])
83
84
85
            # Use apex's multi-tensor applier for efficiency reasons.
            # Multi-tensor applier takes a function and a list of list
            # and performs the operation on that list all in one kernel.
86
87
88
89
90
91
92
93
94
            if grads_for_norm:
                grad_norm, _ = multi_tensor_applier(
                    amp_C.multi_tensor_l2norm,
                    dummy_overflow_buf,
                    [grads_for_norm],
                    False # no per-parameter norm
                )
            else:
                grad_norm = torch.cuda.FloatTensor([0])
mohammad's avatar
mohammad committed
95
96
            # Since we will be summing across data parallel groups,
            # we need the pow(norm-type).
mohammad's avatar
mohammad committed
97
98
99
100
101
102
103
104
            total_norm = grad_norm ** norm_type

        else:
            for grad in grads_for_norm:
                grad_norm = torch.norm(grad, norm_type)
                total_norm += grad_norm ** norm_type

        # Sum across all model-parallel GPUs.
105
106
107
        torch.distributed.all_reduce(total_norm,
                                     op=torch.distributed.ReduceOp.SUM,
                                     group=model_parallel_group)
mohammad's avatar
mohammad committed
108
109
110
111
112
113
114
115
116
117
118
119
        total_norm = total_norm.item() ** (1.0 / norm_type)

    # Scale.
    clip_coeff = max_norm / (total_norm + 1.0e-6)
    if clip_coeff < 1.0:
        dummy_overflow_buf = torch.cuda.IntTensor([0])
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             dummy_overflow_buf,
                             [grads, grads],
                             clip_coeff)

    return total_norm
Rewon Child's avatar
Rewon Child committed
120
121


122
def count_zeros_fp32(parameters, model_parallel_group):
Rewon Child's avatar
Rewon Child committed
123
124
125
126
127
128
129
130

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
Lawrence McAfee's avatar
Lawrence McAfee committed
131
    total_num_zeros = torch.cuda.FloatTensor([0.0])
Rewon Child's avatar
Rewon Child committed
132
133
134
135
136
137
    for param in parameters:
        grad_not_none = param.grad is not None
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grad = param.grad.detach()
Rewon Child's avatar
Rewon Child committed
138
139
            num_zeros = grad.numel() - torch.count_nonzero(grad)
            total_num_zeros = num_zeros + total_num_zeros
Rewon Child's avatar
Rewon Child committed
140
141

    # Sum across all model-parallel GPUs.
142
143
144
    torch.distributed.all_reduce(total_num_zeros,
                                 op=torch.distributed.ReduceOp.SUM,
                                 group=model_parallel_group)
145

Rewon Child's avatar
Rewon Child committed
146
147
148
    total_num_zeros = total_num_zeros.item()

    return total_num_zeros