clip_grads.py 6.5 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Gradient clipping."""

import torch
from torch._six import inf

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

24
25
26
# >>>
# from megatron import mpu
# <<<
mohammad's avatar
mohammad committed
27
28
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
mohammad's avatar
mohammad committed
29
30


Lawrence McAfee's avatar
Lawrence McAfee committed
31
32
# >>>
from lutil import pax, tp
Lawrence McAfee's avatar
Lawrence McAfee committed
33
DEBUG_ITERATION = 1
Lawrence McAfee's avatar
Lawrence McAfee committed
34
35
# <<<

36
37
38
def clip_grad_norm_fp32(parameters, max_norm, norm_type=2,
                        model_parallel_group=None,
                        ITERATION=None):
mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
    """Clips gradient norm of an iterable of parameters whose gradients
       are in fp32.

    This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
    added functionality to handle model parallel parameters. Note that
    the gradients are modified in place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.
52
53
        model_parallel_group (group): due to the nature of the distributed
            optimizer, this is passed as an argument.
mohammad's avatar
mohammad committed
54
55
56
57
58

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """

Lawrence McAfee's avatar
Lawrence McAfee committed
59
    # >>>
60
    # raise Exception("currently debugging ... don't call me.")
Lawrence McAfee's avatar
Lawrence McAfee committed
61
62
    # <<<

mohammad's avatar
mohammad committed
63
64
65
66
67
68
69
70
71
72
73
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
    grads = []
    grads_for_norm = []
    for param in parameters:
        grad_not_none = param.grad is not None
mohammad's avatar
mohammad committed
74
75
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
76
77
        if grad_not_none:
            grad = param.grad.detach()
mohammad's avatar
mohammad committed
78
        if grad_not_none:
79
80
            # Make sure the grads are in fp32
            assert param.grad.type() == 'torch.cuda.FloatTensor'
mohammad's avatar
mohammad committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            grads.append(grad)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grads_for_norm.append(grad)

    # Norm parameters.
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    total_norm = 0.0

    # Calculate norm.
    if norm_type == inf:
        total_norm = max(grad.abs().max() for grad in grads_for_norm)
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
        # Take max across all model-parallel GPUs.
        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.MAX,
97
                                     group=model_parallel_group)
mohammad's avatar
mohammad committed
98
99
100
101
102
        total_norm = total_norm_cuda[0].item()

    else:
        if norm_type == 2.0:
            dummy_overflow_buf = torch.cuda.IntTensor([0])
103
104
105
            # Use apex's multi-tensor applier for efficiency reasons.
            # Multi-tensor applier takes a function and a list of list
            # and performs the operation on that list all in one kernel.
mohammad's avatar
mohammad committed
106
107
108
109
110
111
            grad_norm, _ = multi_tensor_applier(
                amp_C.multi_tensor_l2norm,
                dummy_overflow_buf,
                [grads_for_norm],
                False # no per-parameter norm
            )
mohammad's avatar
mohammad committed
112
113
            # Since we will be summing across data parallel groups,
            # we need the pow(norm-type).
mohammad's avatar
mohammad committed
114
115
116
117
118
119
120
121
            total_norm = grad_norm ** norm_type

        else:
            for grad in grads_for_norm:
                grad_norm = torch.norm(grad, norm_type)
                total_norm += grad_norm ** norm_type

        # Sum across all model-parallel GPUs.
122
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
123
124
        from megatron import get_args
        args = get_args()
125
        if args.use_distributed_optimizer:
Lawrence McAfee's avatar
Lawrence McAfee committed
126
            torch.distributed.all_reduce(total_norm,
127
                                         op=torch.distributed.ReduceOp.SUM)
Lawrence McAfee's avatar
Lawrence McAfee committed
128
129
        else:
            torch.distributed.all_reduce(total_norm,
130
                                         op=torch.distributed.ReduceOp.SUM,
131
                                         group=model_parallel_group)
132
        # <<<
mohammad's avatar
mohammad committed
133
134
135
136
137
138
139
140
141
142
143
144
        total_norm = total_norm.item() ** (1.0 / norm_type)

    # Scale.
    clip_coeff = max_norm / (total_norm + 1.0e-6)
    if clip_coeff < 1.0:
        dummy_overflow_buf = torch.cuda.IntTensor([0])
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             dummy_overflow_buf,
                             [grads, grads],
                             clip_coeff)

    return total_norm
Rewon Child's avatar
Rewon Child committed
145
146


147
def count_zeros_fp32(parameters, model_parallel_group):
Rewon Child's avatar
Rewon Child committed
148
149
150
151
152
153
154
155

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
Rewon Child's avatar
Rewon Child committed
156
    total_num_zeros = 0.0
Rewon Child's avatar
Rewon Child committed
157
158
159
160
161
162
    for param in parameters:
        grad_not_none = param.grad is not None
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grad = param.grad.detach()
Rewon Child's avatar
Rewon Child committed
163
164
            num_zeros = grad.numel() - torch.count_nonzero(grad)
            total_num_zeros = num_zeros + total_num_zeros
Rewon Child's avatar
Rewon Child committed
165
166

    # Sum across all model-parallel GPUs.
167
    # >>>
168
169
    from megatron import get_args
    args = get_args()
170
171
172
    if args.use_distributed_optimizer:
        torch.distributed.all_reduce(total_num_zeros,
                                     op=torch.distributed.ReduceOp.SUM)
173
        # pax({"total_num_zeros": total_num_zeros.item()})
174
175
176
    else:
        torch.distributed.all_reduce(total_num_zeros,
                                     op=torch.distributed.ReduceOp.SUM,
177
                                     group=model_parallel_group)
178
179
    # <<<

Rewon Child's avatar
Rewon Child committed
180
181
182
    total_num_zeros = total_num_zeros.item()

    return total_num_zeros