bert_model.py 7.96 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

import torch

Mohammad's avatar
Mohammad committed
20
from megatron import get_args
mohammad's avatar
mohammad committed
21
from megatron import mpu
22
23
24
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
from megatron.model.transformer import LayerNorm
25
from megatron.model.utils import openai_gelu, erf_gelu
26
27
28
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
29
30
31
from megatron.module import MegatronModule


Neel Kant's avatar
Neel Kant committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def bert_attention_mask_func(attention_scores, attention_mask):
    attention_scores = attention_scores + attention_mask
    return attention_scores


def bert_extended_attention_mask(attention_mask, dtype):
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)
    # Since attention_mask is 1.0 for positions we want to attend and 0.0
    # for masked positions, this operation will create a tensor which is
    # 0.0 for positions we want to attend and -10000.0 for masked positions.
    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    # fp16 compatibility
    extended_attention_mask = extended_attention_mask.to(dtype=dtype)
    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

    return extended_attention_mask


def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


69
70
71
72
73
74
75
76
class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
77
        parallel_output: whether output logits being distributed or not.
78
    """
Neel Kant's avatar
Neel Kant committed
79

80
81
82
83
84
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

85
        args = get_args()
Neel Kant's avatar
Neel Kant committed
86

87
88
        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
89
90
        self.bias.partition_dim = 0
        self.bias.stride = 1
91
92
93
94
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
95
96
97
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
98
        elif args.onnx_safe:
Boris Fomitchev's avatar
Boris Fomitchev committed
99
            self.gelu = erf_gelu
100
101
102

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
103
        hidden_states = self.gelu(hidden_states)
104
105
106
107
108
109
110
111
112
113
114
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


class BertModel(MegatronModule):
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
115
    def __init__(self, num_tokentypes=2, add_binary_head=True,
116
                 parallel_output=True):
117
        super(BertModel, self).__init__()
Mohammad's avatar
Mohammad committed
118
        args = get_args()
119

mohammad's avatar
mohammad committed
120
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
121
122
        self.add_binary_head = add_binary_head
        self.parallel_output = parallel_output
Mohammad's avatar
Mohammad committed
123
124
125
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
Neel Kant's avatar
Neel Kant committed
126

127
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
128
            attention_mask_func=bert_attention_mask_func,
129
            num_tokentypes=num_tokentypes,
130
            add_pooler=self.add_binary_head,
131
            init_method=init_method,
132
            scaled_init_method=scaled_init_method)
133

134
135
136
137
        self.lm_head = BertLMHead(
            self.language_model.embedding.word_embeddings.weight.size(0),
            args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
        self._lm_head_key = 'lm_head'
138
        if self.add_binary_head:
Mohammad's avatar
Mohammad committed
139
140
            self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                init_method)
141
142
            self._binary_head_key = 'binary_head'

mohammad's avatar
mohammad committed
143
144
    def forward(self, input_ids, attention_mask,
                tokentype_ids=None, lm_labels=None):
145
146
147
148
149

        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

150
        if self.add_binary_head:
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            lm_output, pooled_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)
        else:
            lm_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)

        # Output.
        lm_logits = self.lm_head(
            lm_output, self.language_model.embedding.word_embeddings.weight)
166

mohammad's avatar
mohammad committed
167
        binary_logits = None
168
169
        if self.add_binary_head:
            binary_logits = self.binary_head(pooled_output)
mohammad's avatar
mohammad committed
170
171

        if lm_labels is None:
172
            return lm_logits, binary_logits
mohammad's avatar
mohammad committed
173
        else:
mohammad's avatar
mohammad committed
174
175
176
177
178
179
            if self.fp16_lm_cross_entropy:
                assert lm_logits.dtype == torch.half
                lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels)
            else:
                lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(),
                                                           lm_labels)
mohammad's avatar
mohammad committed
180
            return lm_loss, binary_logits
181
182
183
184
185
186
187
188
189
190


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
191
192
193
194
            destination, prefix, keep_vars)
        state_dict_[self._lm_head_key] \
            = self.lm_head.state_dict_for_save_checkpoint(
            destination, prefix, keep_vars)
195
196
197
198
199
200
201
202
203
204
        if self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
205
206
        self.lm_head.load_state_dict(
            state_dict[self._lm_head_key], strict=strict)
207
        if self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
208
209
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)