train_mixtral_8x7B_multinodes.sh 4.62 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
#!/bin/bash

silencealiang's avatar
silencealiang committed
3
4
5
6
7
8
9
for para in $*
do
    if [[ $para == --profiling* ]];then
        profiling=${para#*=}
    fi
done

xingjinliang's avatar
xingjinliang committed
10
# Runs Mixtral 8x7B model
silencealiang's avatar
silencealiang committed
11
12
source /opt/dtk/env.sh

silencealiang's avatar
silencealiang committed
13
# default env
silencealiang's avatar
silencealiang committed
14
15
16
17
CURRENT_DIR="$( cd "$( dirname "$0" )" && pwd )"
MEGATRON_PATH=$( dirname $( dirname ${CURRENT_DIR}))
export PYTHONPATH=${MEGATRON_PATH}:$PYTHONPATH
export GLOG_minloglevel=3
silencealiang's avatar
add  
silencealiang committed
18
export CUDA_DEVICE_MAX_CONNECTIONS=1
xingjinliang's avatar
xingjinliang committed
19
20
21
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export GPU_MAX_HW_QUEUES=10
silencealiang's avatar
add  
silencealiang committed
22

silencealiang's avatar
silencealiang committed
23
# nccl env
xingjinliang's avatar
xingjinliang committed
24
export NCCL_ALGO=Ring
silencealiang's avatar
add  
silencealiang committed
25
26
27
28
29
30
export NCCL_MIN_NCHANNELS=32
export NCCL_MAX_NCHANNELS=32
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
silencealiang's avatar
silencealiang committed
31
32
33
export NCCL_TOPO_FILE="/public/home/xingjl/dependency/rccl-tests-0204/topo-input.xml"

# enable BatchLinear
silencealiang's avatar
add  
silencealiang committed
34
export GROUPED_GEMM_BatchLinear=1
silencealiang's avatar
silencealiang committed
35

xingjinliang's avatar
xingjinliang committed
36
37
38
39
40
41
42
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=25900

CHECKPOINT_PATH=./CKPT 
silencealiang's avatar
silencealiang committed
43
44
TOKENIZER_MODEL=./mixtral_dataset/tokenizer.model
DATA_PATH=./mixtral_dataset/my-mixtral_text_document
xingjinliang's avatar
xingjinliang committed
45
46
47
48
49
50
51
52
53
54
55
56
57

DISTRIBUTED_ARGS=(
    --rank ${RANK}
    --world-size ${WORLD_SIZE}
    --local-rank ${LOCAL_RANK}
    --dist-url tcp://${DIST_URL}:${DIST_PORT}
)

MODEL_ARGS=(
    --use-mcore-models
    --disable-bias-linear
    --seq-length 4096
    --max-position-embeddings 32768
silencealiang's avatar
silencealiang committed
58
    --num-layers 32
silencealiang's avatar
add  
silencealiang committed
59
    --hidden-size 4096
xingjinliang's avatar
xingjinliang committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    --ffn-hidden-size 14336
    --num-attention-heads 32
    --init-method-std 0.01
    --attention-dropout 0.0
    --hidden-dropout 0.0
    --normalization RMSNorm
    --position-embedding-type rope
    --swiglu
    --untie-embeddings-and-output-weights
    --group-query-attention
    --num-query-groups 8
    --no-masked-softmax-fusion
    --no-position-embedding
    --rotary-base 1000000
)

MOE_ARGS=(
    --num-experts 8
    --moe-router-topk 2
    --moe-router-load-balancing-type aux_loss
    --moe-aux-loss-coeff 1e-2
    --moe-token-dispatcher-type alltoall
    --moe-expert-capacity-factor 0.5
    --moe-pad-expert-input-to-capacity
    --moe-grouped-gemm
)

DATA_ARGS=(
    --tokenizer-type Llama2Tokenizer
    --tokenizer-model ${TOKENIZER_MODEL}
    --data-path $DATA_PATH
    --split 99990,8,2
)

TRAINING_ARGS=(
    --micro-batch-size 1
silencealiang's avatar
add  
silencealiang committed
96
    --global-batch-size 256
xingjinliang's avatar
xingjinliang committed
97
    --lr 1e-4
silencealiang's avatar
silencealiang committed
98
    --train-iters 10
xingjinliang's avatar
xingjinliang committed
99
100
101
102
103
104
105
    --lr-decay-iters 320000
    --lr-decay-style cosine
    --min-lr 1.0e-5
    --weight-decay 0.1
    --lr-warmup-iters 500
    --clip-grad 1.0
    --bf16
silencealiang's avatar
silencealiang committed
106
107
108
109
110
111
    --overlap-param-gather
    --overlap-grad-reduce
)

TORCH_PROFIE_ARGS=(
    --profile
silencealiang's avatar
silencealiang committed
112
    --profile-ranks 0 1 2 3 8 9 10 11 
silencealiang's avatar
silencealiang committed
113
114
    --profile-step-start 3
    --profile-step-end 4
silencealiang's avatar
silencealiang committed
115
    --profile-dir torch_prof_mixtral_4nodes_tp2-pp8-ep2-ep_tp1
silencealiang's avatar
silencealiang committed
116
117
118
    --use-pytorch-profiler
)

xingjinliang's avatar
xingjinliang committed
119
120
MODEL_PARALLEL_ARGS=(
    --tensor-model-parallel-size 2
silencealiang's avatar
silencealiang committed
121
    --pipeline-model-parallel-size 8
xingjinliang's avatar
xingjinliang committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    --expert-model-parallel-size 2
    --expert-tensor-parallel-size 1
    --use-distributed-optimizer
    --sequence-parallel
)

LOGGING_ARGS=(
    --log-throughput \
    --log-interval 1 \
    --save-interval 10000 \
    --eval-interval 1000 \
    --eval-iters -1 \
    #--save $CHECKPOINT_PATH \
    #--load $CHECKPOINT_PATH \
    --tensorboard-dir "${CHECKPOINT_PATH}/tensorboard" \
    --no-load-optim \
    --no-load-rng
)

if [ -n "${WANDB_API_KEY}" ]; then
    LOGGING_ARGS+=(
        --wandb-project ${WANDB_PROJECT:-"Mixtral"}
        --wandb-exp-name ${WANDB_NAME:-"Mixtral_8x7B"}
    )
fi

APP="python3 -u pretrain_gpt.py \
    ${DISTRIBUTED_ARGS[@]} \
    ${MODEL_ARGS[@]} \
    ${MOE_ARGS[@]} \
    ${DATA_ARGS[@]} \
    ${TRAINING_ARGS[@]} \
    ${MODEL_PARALLEL_ARGS[@]} \
    ${LOGGING_ARGS[@]} \
    "

silencealiang's avatar
silencealiang committed
158
159
160
161
if [[ $profiling == "torch" ]]; then
    APP+=" ${TORCH_PROFIE_ARGS[@]}"
fi

xingjinliang's avatar
xingjinliang committed
162
163
164
165
#for hygon cpu
case ${LOCAL_RANK} in
[0])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
166
167
  ${APP}
  #numactl --cpunodebind=0 --membind=0 ${APP}
xingjinliang's avatar
xingjinliang committed
168
169
170
  ;;
[1])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
171
172
  ${APP}
  #numactl --cpunodebind=1 --membind=1 ${APP}
xingjinliang's avatar
xingjinliang committed
173
174
175
  ;;
[2])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
176
177
  ${APP}
  #numactl --cpunodebind=2 --membind=2 ${APP}
xingjinliang's avatar
xingjinliang committed
178
179
180
  ;;
[3])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
181
182
  ${APP}
  #numactl --cpunodebind=3 --membind=3 ${APP}
xingjinliang's avatar
xingjinliang committed
183
184
185
  ;;
[4])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
186
187
  ${APP}
  #numactl --cpunodebind=4 --membind=4 ${APP}
xingjinliang's avatar
xingjinliang committed
188
189
190
  ;;
[5])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
191
192
  ${APP}
  #numactl --cpunodebind=5 --membind=5 ${APP}
xingjinliang's avatar
xingjinliang committed
193
194
195
  ;;
[6])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
196
197
  ${APP}
  #numactl --cpunodebind=6 --membind=6 ${APP}
xingjinliang's avatar
xingjinliang committed
198
199
200
  ;;
[7])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
201
202
  ${APP}
  #numactl --cpunodebind=7 --membind=7 ${APP}
xingjinliang's avatar
xingjinliang committed
203
204
205
  ;;
esac