Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Megatron-LM
Commits
b2f70020
Commit
b2f70020
authored
Jan 16, 2025
by
silencealiang
Browse files
增加2nodes脚本
parent
35cb3cc1
Pipeline
#2224
passed with stage
Changes
4
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
261 additions
and
18 deletions
+261
-18
2nodes
2nodes
+2
-0
run_2nodes.sh
run_2nodes.sh
+21
-0
train_mixtral_8x7B_1nodes.sh
train_mixtral_8x7B_1nodes.sh
+26
-18
train_mixtral_8x7B_2nodes.sh
train_mixtral_8x7B_2nodes.sh
+212
-0
No files found.
2nodes
0 → 100644
View file @
b2f70020
10.16.6.2 slots=8
10.16.6.7 slots=8
run_2nodes.sh
0 → 100644
View file @
b2f70020
for
para
in
$*
do
if
[[
$para
==
--profiling
*
]]
;
then
profiling
=
${
para
#*=
}
export
GPU_FLUSH_ON_EXECUTION
=
1
export
HIP_DIRECT_DISPATCH
=
0
fi
done
mpirun
-np
16
--hostfile
2nodes
\
--allow-run-as-root
\
--bind-to
none
\
--mca
plm_rsh_no_tree_spawn 1
\
--mca
plm_rsh_args
"-p 12333"
\
--mca
btl_tcp_if_include ibs8
\
train_mixtral_8x7B_2nodes.sh 10.16.6.2
--profiling
=
$profiling
>
output.log 2>&1
wait
rm
-rf
CKPT
#rm -rf mixtral_dataset/my-mixtral_text_document
\ No newline at end of file
train_mixtral_8x7B_1nodes.sh
View file @
b2f70020
...
...
@@ -15,10 +15,10 @@ export HIP_DIRECT_DISPATCH=0
export
HSA_FORCE_FINE_GRAIN_PCIE
=
1
export
OMP_NUM_THREADS
=
1
export
GPU_MAX_HW_QUEUES
=
10
export
NVTE_FLASH_ATTN_TRITON
=
1
#
export NVTE_FLASH_ATTN_TRITON=1
export
NCCL_ALGO
=
Ring
export
NCCL_NCHANNELS_PER_PEER
=
2
export
NCCL_MIN_NCHANNELS
=
1
6
export
NCCL_NCHANNELS_PER_PEER
=
8
export
NCCL_MIN_NCHANNELS
=
1
5
export
NCCL_IB_TIMEOUT
=
22
export
CUDA_DEVICE_MAX_CONNECTIONS
=
1
#export NCCL_IB_HCA=mlx5_0
...
...
@@ -27,7 +27,6 @@ export NCCL_NET_GDR_LEVEL=SYS
export
NCCL_NET_GDR_READ
=
0
export
GLOG_minloglevel
=
3
RANK
=
$OMPI_COMM_WORLD_RANK
LOCAL_RANK
=
$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE
=
$OMPI_COMM_WORLD_SIZE
...
...
@@ -35,8 +34,8 @@ DIST_URL=${1}
DIST_PORT
=
25900
CHECKPOINT_PATH
=
./CKPT
TOKENIZER_MODEL
=
.
./../megatron-lm
/mixtral_dataset/tokenizer.model
DATA_PATH
=
.
./../megatron-lm
/mixtral_dataset/my-mixtral_text_document
TOKENIZER_MODEL
=
./mixtral_dataset/tokenizer.model
DATA_PATH
=
./mixtral_dataset/my-mixtral_text_document
DISTRIBUTED_ARGS
=(
--rank
${
RANK
}
...
...
@@ -50,7 +49,7 @@ MODEL_ARGS=(
--disable-bias-linear
--seq-length
4096
--max-position-embeddings
32768
--num-layers
8
#16
--num-layers
8
--hidden-size
1024
--ffn-hidden-size
14336
--num-attention-heads
32
...
...
@@ -88,9 +87,9 @@ DATA_ARGS=(
TRAINING_ARGS
=(
--micro-batch-size
1
--global-batch-size
128
#256
--global-batch-size
128
--lr
1e-4
--train-iters
2
0
--train-iters
1
0
--lr-decay-iters
320000
--lr-decay-style
cosine
--min-lr
1.0e-5
...
...
@@ -100,6 +99,7 @@ TRAINING_ARGS=(
--bf16
--overlap-param-gather
--overlap-grad-reduce
#--tp-comm-overlap
)
TORCH_PROFIE_ARGS
=(
...
...
@@ -107,7 +107,7 @@ TORCH_PROFIE_ARGS=(
--profile-ranks
0 1 2 3 4 5 6 7
--profile-step-start
3
--profile-step-end
4
--profile-dir
torch_prof_data
--profile-dir
torch_prof_data
_1nodes_dcu_batchgemm
--use-pytorch-profiler
)
...
...
@@ -170,35 +170,43 @@ fi
case
${
LOCAL_RANK
}
in
[
0]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
numactl
--cpunodebind
=
0
--membind
=
0
${
APP
}
${
APP
}
#numactl --cpunodebind=0 --membind=0 ${APP}
;;
[
1]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
numactl
--cpunodebind
=
1
--membind
=
1
${
APP
}
${
APP
}
#numactl --cpunodebind=1 --membind=1 ${APP}
;;
[
2]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
numactl
--cpunodebind
=
2
--membind
=
2
${
APP
}
${
APP
}
#numactl --cpunodebind=2 --membind=2 ${APP}
;;
[
3]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
numactl
--cpunodebind
=
3
--membind
=
3
${
APP
}
${
APP
}
#numactl --cpunodebind=3 --membind=3 ${APP}
;;
[
4]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
numactl
--cpunodebind
=
4
--membind
=
4
${
APP
}
${
APP
}
#numactl --cpunodebind=4 --membind=4 ${APP}
;;
[
5]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
numactl
--cpunodebind
=
5
--membind
=
5
${
APP
}
${
APP
}
#numactl --cpunodebind=5 --membind=5 ${APP}
;;
[
6]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
numactl
--cpunodebind
=
6
--membind
=
6
${
APP
}
${
APP
}
#numactl --cpunodebind=6 --membind=6 ${APP}
;;
[
7]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
numactl
--cpunodebind
=
7
--membind
=
7
${
APP
}
${
APP
}
#numactl --cpunodebind=7 --membind=7 ${APP}
;;
esac
train_mixtral_8x7B_2nodes.sh
0 → 100644
View file @
b2f70020
#!/bin/bash
for
para
in
$*
do
if
[[
$para
==
--profiling
*
]]
;
then
profiling
=
${
para
#*=
}
export
GPU_FLUSH_ON_EXECUTION
=
1
export
HIP_DIRECT_DISPATCH
=
0
fi
done
source
/opt/dtk/env.sh
# Runs Mixtral 8x7B model
export
HIP_DIRECT_DISPATCH
=
0
export
HSA_FORCE_FINE_GRAIN_PCIE
=
1
export
OMP_NUM_THREADS
=
1
export
GPU_MAX_HW_QUEUES
=
10
#export NVTE_FLASH_ATTN_TRITON=1
export
NCCL_ALGO
=
Ring
export
NCCL_NCHANNELS_PER_PEER
=
8
export
NCCL_MIN_NCHANNELS
=
15
export
NCCL_IB_TIMEOUT
=
22
export
CUDA_DEVICE_MAX_CONNECTIONS
=
1
export
NCCL_IB_HCA
=
mlx5_0
export
NCCL_SOCKET_IFNAME
=
enp33s0f3u1
export
NCCL_NET_GDR_LEVEL
=
SYS
export
NCCL_NET_GDR_READ
=
0
export
GLOG_minloglevel
=
3
RANK
=
$OMPI_COMM_WORLD_RANK
LOCAL_RANK
=
$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE
=
$OMPI_COMM_WORLD_SIZE
DIST_URL
=
${
1
}
DIST_PORT
=
25900
CHECKPOINT_PATH
=
./CKPT
TOKENIZER_MODEL
=
./mixtral_dataset/tokenizer.model
DATA_PATH
=
./mixtral_dataset/my-mixtral_text_document
DISTRIBUTED_ARGS
=(
--rank
${
RANK
}
--world-size
${
WORLD_SIZE
}
--local-rank
${
LOCAL_RANK
}
--dist-url
tcp://
${
DIST_URL
}
:
${
DIST_PORT
}
)
MODEL_ARGS
=(
--use-mcore-models
--disable-bias-linear
--seq-length
4096
--max-position-embeddings
32768
--num-layers
32
--hidden-size
4096
--ffn-hidden-size
14336
--num-attention-heads
32
--init-method-std
0.01
--attention-dropout
0.0
--hidden-dropout
0.0
--normalization
RMSNorm
--position-embedding-type
rope
--swiglu
--untie-embeddings-and-output-weights
--group-query-attention
--num-query-groups
8
--no-masked-softmax-fusion
--no-position-embedding
--rotary-base
1000000
)
MOE_ARGS
=(
--num-experts
8
--moe-router-topk
2
--moe-router-load-balancing-type
aux_loss
--moe-aux-loss-coeff
1e-2
--moe-token-dispatcher-type
alltoall
--moe-expert-capacity-factor
0.5
--moe-pad-expert-input-to-capacity
--moe-grouped-gemm
)
DATA_ARGS
=(
--tokenizer-type
Llama2Tokenizer
--tokenizer-model
${
TOKENIZER_MODEL
}
--data-path
$DATA_PATH
--split
99990,8,2
)
TRAINING_ARGS
=(
--micro-batch-size
1
--global-batch-size
256
--lr
1e-4
--train-iters
10
--lr-decay-iters
320000
--lr-decay-style
cosine
--min-lr
1.0e-5
--weight-decay
0.1
--lr-warmup-iters
500
--clip-grad
1.0
--bf16
--overlap-param-gather
--overlap-grad-reduce
#--tp-comm-overlap
)
TORCH_PROFIE_ARGS
=(
--profile
--profile-ranks
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--profile-step-start
3
--profile-step-end
4
--profile-dir
torch_prof_data_record_shapes
--use-pytorch-profiler
)
HIP_PROFIE_ARGS
=(
--profile
--profile-ranks
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--profile-step-start
4
--profile-step-end
5
--use-hip-profiler
)
MODEL_PARALLEL_ARGS
=(
--tensor-model-parallel-size
2
--pipeline-model-parallel-size
2
--expert-model-parallel-size
4
--expert-tensor-parallel-size
2
--use-distributed-optimizer
--sequence-parallel
)
LOGGING_ARGS
=(
--log-throughput
\
--log-interval
1
\
--save-interval
10000
\
--eval-interval
1000
\
--eval-iters
-1
\
#--save $CHECKPOINT_PATH \
#--load $CHECKPOINT_PATH \
--tensorboard-dir
"
${
CHECKPOINT_PATH
}
/tensorboard"
\
--no-load-optim
\
--no-load-rng
)
if
[
-n
"
${
WANDB_API_KEY
}
"
]
;
then
LOGGING_ARGS+
=(
--wandb-project
${
WANDB_PROJECT
:-
"Mixtral"
}
--wandb-exp-name
${
WANDB_NAME
:-
"Mixtral_8x7B"
}
)
fi
APP
=
"python3 -u pretrain_gpt.py
\
${
DISTRIBUTED_ARGS
[@]
}
\
${
MODEL_ARGS
[@]
}
\
${
MOE_ARGS
[@]
}
\
${
DATA_ARGS
[@]
}
\
${
TRAINING_ARGS
[@]
}
\
${
MODEL_PARALLEL_ARGS
[@]
}
\
${
LOGGING_ARGS
[@]
}
\
"
if
[[
$profiling
==
"torch"
]]
;
then
APP+
=
"
${
TORCH_PROFIE_ARGS
[@]
}
"
elif
[[
$profiling
==
"hip"
]]
;
then
mkdir
-p
hip_prof_data
APP+
=
"
${
HIP_PROFIE_ARGS
[@]
}
"
APP
=
"hipprof -d hip_prof_data --hip-trace --trace-off
${
APP
}
"
fi
#for hygon cpu
case
${
LOCAL_RANK
}
in
[
0]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
${
APP
}
#numactl --cpunodebind=0 --membind=0 ${APP}
;;
[
1]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
${
APP
}
#numactl --cpunodebind=1 --membind=1 ${APP}
;;
[
2]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
${
APP
}
#numactl --cpunodebind=2 --membind=2 ${APP}
;;
[
3]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
${
APP
}
#numactl --cpunodebind=3 --membind=3 ${APP}
;;
[
4]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
${
APP
}
#numactl --cpunodebind=4 --membind=4 ${APP}
;;
[
5]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
${
APP
}
#numactl --cpunodebind=5 --membind=5 ${APP}
;;
[
6]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
${
APP
}
#numactl --cpunodebind=6 --membind=6 ${APP}
;;
[
7]
)
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
${
APP
}
#numactl --cpunodebind=7 --membind=7 ${APP}
;;
esac
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment