clip_grads.py 5.19 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Gradient clipping."""

import torch
from torch._six import inf

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
24
25
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
mohammad's avatar
mohammad committed
26
27


28
29
def clip_grad_norm_fp32(parameters, grads_for_norm,
                        max_norm, norm_type=2,
Lawrence McAfee's avatar
Lawrence McAfee committed
30
                        model_parallel_group=None):
mohammad's avatar
mohammad committed
31
32
33
34
35
36
37
38
39
40
41
42
43
    """Clips gradient norm of an iterable of parameters whose gradients
       are in fp32.

    This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
    added functionality to handle model parallel parameters. Note that
    the gradients are modified in place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.
Lawrence McAfee's avatar
Lawrence McAfee committed
44
        model_parallel_group (group): given the nature of the distributed
45
            optimizer, this is passed as an argument.
mohammad's avatar
mohammad committed
46
47
48
49
50
51
52
53

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

54
    # Grads.
55
    grads = [ p.grad.detach() for p in parameters if p.grad is not None ]
56

mohammad's avatar
mohammad committed
57
58
59
60
61
62
63
64
65
66
67
68
    # Norm parameters.
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    total_norm = 0.0

    # Calculate norm.
    if norm_type == inf:
        total_norm = max(grad.abs().max() for grad in grads_for_norm)
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
        # Take max across all model-parallel GPUs.
        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.MAX,
69
                                     group=model_parallel_group)
mohammad's avatar
mohammad committed
70
71
72
73
74
        total_norm = total_norm_cuda[0].item()

    else:
        if norm_type == 2.0:
            dummy_overflow_buf = torch.cuda.IntTensor([0])
75
76
77
            # Use apex's multi-tensor applier for efficiency reasons.
            # Multi-tensor applier takes a function and a list of list
            # and performs the operation on that list all in one kernel.
78
79
80
81
82
83
84
85
86
            if grads_for_norm:
                grad_norm, _ = multi_tensor_applier(
                    amp_C.multi_tensor_l2norm,
                    dummy_overflow_buf,
                    [grads_for_norm],
                    False # no per-parameter norm
                )
            else:
                grad_norm = torch.cuda.FloatTensor([0])
mohammad's avatar
mohammad committed
87
88
            # Since we will be summing across data parallel groups,
            # we need the pow(norm-type).
mohammad's avatar
mohammad committed
89
90
91
92
93
94
95
96
            total_norm = grad_norm ** norm_type

        else:
            for grad in grads_for_norm:
                grad_norm = torch.norm(grad, norm_type)
                total_norm += grad_norm ** norm_type

        # Sum across all model-parallel GPUs.
97
98
99
        torch.distributed.all_reduce(total_norm,
                                     op=torch.distributed.ReduceOp.SUM,
                                     group=model_parallel_group)
mohammad's avatar
mohammad committed
100
101
102
103
104
105
106
107
108
109
110
111
        total_norm = total_norm.item() ** (1.0 / norm_type)

    # Scale.
    clip_coeff = max_norm / (total_norm + 1.0e-6)
    if clip_coeff < 1.0:
        dummy_overflow_buf = torch.cuda.IntTensor([0])
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             dummy_overflow_buf,
                             [grads, grads],
                             clip_coeff)

    return total_norm
Rewon Child's avatar
Rewon Child committed
112
113


114
def count_zeros_fp32(parameters, model_parallel_group):
Rewon Child's avatar
Rewon Child committed
115
116
117
118
119
120
121
122

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
Rewon Child's avatar
Rewon Child committed
123
    total_num_zeros = 0.0
Rewon Child's avatar
Rewon Child committed
124
125
126
127
128
129
    for param in parameters:
        grad_not_none = param.grad is not None
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grad = param.grad.detach()
Rewon Child's avatar
Rewon Child committed
130
131
            num_zeros = grad.numel() - torch.count_nonzero(grad)
            total_num_zeros = num_zeros + total_num_zeros
Rewon Child's avatar
Rewon Child committed
132
133

    # Sum across all model-parallel GPUs.
134
135
136
    torch.distributed.all_reduce(total_num_zeros,
                                 op=torch.distributed.ReduceOp.SUM,
                                 group=model_parallel_group)
137

Rewon Child's avatar
Rewon Child committed
138
139
140
    total_num_zeros = total_num_zeros.item()

    return total_num_zeros