generation.py 17.8 KB
Newer Older
mshoeybi's avatar
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Generation utilities."""

import torch
import torch.nn.functional as F

mshoeybi's avatar
working  
mshoeybi committed
21
from megatron import get_args, get_tokenizer, mpu
mshoeybi's avatar
mshoeybi committed
22
23
24
from megatron.utils import get_ltor_masks_and_position_ids
from .communication import (
    copy_from_last_to_first_pipeline_stage,
mshoeybi's avatar
working  
mshoeybi committed
25
26
    broadcast_from_last_pipeline_stage,
    broadcast_from_last_to_first_pipeline_stage)
mshoeybi's avatar
mshoeybi committed
27
from .forward_step import ForwardStep
mshoeybi's avatar
mshoeybi committed
28
from .sampling import sample
Peng Xu's avatar
Peng Xu committed
29
from .beam_utils import BeamHypotheses
mshoeybi's avatar
mshoeybi committed
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def score_and_return_on_first_stage(model, tokens, lengths):
    """Function for just scoring.
    Arguments:
        model: no interleaving is supported.
        tokens: prompt tokens extended to be of size [b, max_prompt_length]
        lengths: original prompt length, size: [b]
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: 
        output_log_probs: log probability of the selected tokens. size: [b, s]
    """

    args = get_args()

    batch_size = tokens.size(0)
    max_prompt_length = lengths.max().item()
    assert max_prompt_length == tokens.size(1)
    max_sequence_length = min(max_prompt_length, args.max_position_embeddings)

    # forward step.
    forward_step = ForwardStep(model, batch_size, max_sequence_length)

    # ===================
    # Pre-allocate memory
    # ===================

    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
    output_log_probs_size = (batch_size, max_sequence_length - 1)
    
    if mpu.is_pipeline_last_stage():
        output_log_probs = torch.empty(output_log_probs_size,
                                       dtype=torch.float32,
                                       device=torch.cuda.current_device())
    
    # =============
    # Run infernece
    # =============
    with torch.no_grad():
        attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens)
        
        # logits will be meanigful only in the last pipeline stage.
        logits = forward_step(tokens, position_ids, attention_mask)

        if mpu.is_pipeline_last_stage():
            # Always the last stage should have an output.
            assert logits is not None
            log_probs = F.log_softmax(logits, dim=2)
            
            # Pick the tokens that we need to get the log
            # probabilities for. Note that next input token is
            # the token which we selected in the current logits,
            # so shift by 1.
            indices = torch.unsqueeze(tokens[:, 1:], 2)
            output_log_probs = torch.gather(log_probs, 2, indices).squeeze(2)
    
    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================
    output_log_probs = broadcast_from_last_to_first_pipeline_stage(
        output_log_probs_size, torch.float32, output_log_probs)
    
    return tokens, lengths, output_log_probs
mshoeybi's avatar
mshoeybi committed
94

mshoeybi's avatar
working  
mshoeybi committed
95
96
97
def generate_tokens_probs_and_return_on_first_stage(
        model, tokens, lengths,
        return_output_log_probs=False,
mshoeybi's avatar
mshoeybi committed
98
        top_k=0, top_p=0.0,
mshoeybi's avatar
mshoeybi committed
99
        temperature=1.0,
100
101
102
103
        use_eod_token_for_early_termination=True,
        stop_on_double_eol=False,
        stop_on_eol=False
        ):
mshoeybi's avatar
working  
mshoeybi committed
104
105
    """Main token generation function.
    Arguments:
mshoeybi's avatar
mshoeybi committed
106
        model: no interleaving is supported.
mshoeybi's avatar
working  
mshoeybi committed
107
108
109
110
        tokens: prompt tokens extended to be of size [b, max-sequence-length]
        lengths: original prompt length, size: [b]
        return_output_log_probs: flag to calculate the log probability of
            the generated tokens. Note that the log probability is the one
mshoeybi's avatar
mshoeybi committed
111
112
113
114
115
116
            from the original logit.
        top_k, top_p: top-k and top-p sampling parameters.
            Note that top-k = 1 is gready. Also, these paramters are
            exclusive meaning that:
                if top-k > 0 then we expect top-p=0.
                if top-p > 0 then we check for top-k=0.
mshoeybi's avatar
working  
mshoeybi committed
117
        temperature: sampling temperature.
mshoeybi's avatar
mshoeybi committed
118
119
        use_eod_token_for_early_termination: if True, do early termination if
            all the sequences have reached this token.
mshoeybi's avatar
working  
mshoeybi committed
120
121
122
123
124
125
126
127
128
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: Note that is size is adjusted to a lower value than
             max-sequence-length if generation is terminated early.
        tokens: prompt and generated tokens. size: [b, :]
        generated_sequence_lengths: total length (including prompt) of
            the generated sequence. size: [b]
        output_log_probs: log probability of the selected tokens. size: [b, s]
    """
mshoeybi's avatar
mshoeybi committed
129
130
131
132
133
134
135
136

    args = get_args()
    tokenizer = get_tokenizer()

    batch_size = tokens.size(0)
    min_prompt_length = lengths.min().item()
    max_sequence_length = tokens.size(1)
    max_sequence_length = min(max_sequence_length, args.max_position_embeddings)
137
138
139
    
    # If the context is too big, this happens
    if min_prompt_length >= max_sequence_length:
rprenger's avatar
rprenger committed
140
        raise ValueError("context length + tokens_to_generate too large")
mshoeybi's avatar
mshoeybi committed
141

mshoeybi's avatar
mshoeybi committed
142
    # forward step.
mshoeybi's avatar
mshoeybi committed
143
    forward_step = ForwardStep(model, batch_size, max_sequence_length)
mshoeybi's avatar
mshoeybi committed
144

mshoeybi's avatar
mshoeybi committed
145
146
147
148
149
150
151
152
153
154
155
    # Added termination_id to support the case that we want to terminate the
    # generation once that id is generated.
    if hasattr(args, 'eos_id'):
        termination_id = args.eos_id
    else:
        termination_id = tokenizer.eod

    # ===================
    # Pre-allocate memory
    # ===================

mshoeybi's avatar
working  
mshoeybi committed
156
157
158
    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
    output_log_probs_size = (batch_size, max_sequence_length - 1)
mshoeybi's avatar
mshoeybi committed
159
    # Lengths of generated seuquence including including prompts.
mshoeybi's avatar
working  
mshoeybi committed
160
161
162
163
164
165
166
    generated_sequence_lengths = None
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = torch.empty(output_log_probs_size,
                                           dtype=torch.float32,
                                           device=torch.cuda.current_device())
        generated_sequence_lengths = torch.ones(
167
168
169
                batch_size, dtype=torch.int64,
                device=torch.cuda.current_device()) * max_sequence_length
    
mshoeybi's avatar
mshoeybi committed
170
171
172
173
    # Whether we have reached a termination id.
    is_generation_done = torch.zeros(batch_size, dtype=torch.uint8,
                                     device=torch.cuda.current_device())

mshoeybi's avatar
working  
mshoeybi committed
174
175
176
177
    # =============
    # Run infernece
    # =============

mshoeybi's avatar
mshoeybi committed
178
    with torch.no_grad():
mshoeybi's avatar
mshoeybi committed
179
180
        attention_mask, position_ids = _build_attention_mask_and_position_ids(
            tokens)
mshoeybi's avatar
mshoeybi committed
181
182
183
184
185
186
187
188
189
190
        prev_context_length = 0
        for context_length in range(min_prompt_length, max_sequence_length):

            # Pick the slice that we need to pass through the network.
            tokens2use = tokens[:, prev_context_length:context_length]
            positions2use = position_ids[:, prev_context_length:context_length]
            attention_mask2use = attention_mask[
                ..., prev_context_length:context_length, :context_length]

            # logits will be meanigful only in the last pipeline stage.
mshoeybi's avatar
mshoeybi committed
191
            logits = forward_step(tokens2use, positions2use, attention_mask2use)
mshoeybi's avatar
mshoeybi committed
192
193
194
195
196
197
198

            if mpu.is_pipeline_last_stage():
                # Always the last stage should have an output.
                assert logits is not None

                # Sample.
                last_token_logits = logits[:, -1, :]
mshoeybi's avatar
mshoeybi committed
199
200
201
202
203
                new_sample = sample(last_token_logits,
                                    top_k=top_k,
                                    top_p=top_p,
                                    temperature=temperature,
                                    vocab_size=tokenizer.vocab_size)
rprenger's avatar
rprenger committed
204
                
mshoeybi's avatar
mshoeybi committed
205
206
207
                # If a prompt length is smaller or equal th current context
                # length, it means we have started generating tokens
                started = lengths <= context_length
mshoeybi's avatar
mshoeybi committed
208
                # Update the tokens.
mshoeybi's avatar
mshoeybi committed
209
210
211
                tokens[started, context_length] = new_sample[started]

                # Calculate the log probabilities.
212
                if return_output_log_probs:
mshoeybi's avatar
working  
mshoeybi committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                    log_probs = F.log_softmax(logits, dim=2)
                    if return_output_log_probs:
                        # Pick the tokens that we need to get the log
                        # probabilities for. Note that next input token is
                        # the token which we selected in the current logits,
                        # so shift by 1.
                        indices = torch.unsqueeze(
                            tokens[
                                :,
                                (prev_context_length + 1):(context_length + 1)],
                            2)
                        output_log_probs[:,
                                         prev_context_length:context_length] = \
                            torch.gather(log_probs, 2, indices).squeeze(2)
mshoeybi's avatar
mshoeybi committed
227
228
229
230
231
232
233
234
235
236
237
238

            # Update the tokens on the first stage so the next input to
            # the network is correct.
            copy_from_last_to_first_pipeline_stage(batch_size, torch.int64,
                                                   tokens[:, context_length])

            # Update the context length for the next token generation.
            prev_context_length = context_length

            # Check if all the sequences have hit the termination_id.
            done = None
            if mpu.is_pipeline_last_stage():
rprenger's avatar
rprenger committed
239
240
                # TODO(rprenger) These stopping methods are tokenizer dependent
                # instead tokenization should be in the inference loop so stop sequences can be used
241
242
243
244
245
246
247
248
249
250
251
252
                if stop_on_double_eol:
                    hit_double_eol = (new_sample == 628).byte() & started.byte()
                    hit_two_eols = (new_sample == 198).byte() & (tokens[:, context_length-1] == 198).byte() & started.byte()
                    done_token = hit_double_eol | hit_two_eols
                elif stop_on_eol:
                    hit_double_eol = (new_sample == 628).byte() & started.byte()
                    hit_eol = (new_sample == 198).byte() & started.byte()
                    done_token = hit_double_eol | hit_eol
                else: 
                    done_token = (new_sample == termination_id).byte() & \
                        started.byte()
                
mshoeybi's avatar
mshoeybi committed
253
254
255
256
257
258
259
                just_finished = (done_token & ~is_generation_done).bool()
                generated_sequence_lengths[just_finished.view(-1)] = \
                    context_length + 1
                is_generation_done = is_generation_done | done_token
                done = torch.all(is_generation_done)
            done = broadcast_from_last_pipeline_stage(1, torch.uint8,
                                                      tensor=done)
mshoeybi's avatar
mshoeybi committed
260
261
            if use_eod_token_for_early_termination and done:
                break
Peng Xu's avatar
Peng Xu committed
262
            
mshoeybi's avatar
working  
mshoeybi committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    # ===================================================
    # Update the length of based on max generated length.
    # ===================================================

    tokens = tokens[:, :(context_length + 1)]
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = output_log_probs[:, :context_length]

    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================

    generated_sequence_lengths = broadcast_from_last_to_first_pipeline_stage(
        batch_size, torch.int64, generated_sequence_lengths)
    if return_output_log_probs:
        output_log_probs_size = (batch_size, context_length)
        output_log_probs = broadcast_from_last_to_first_pipeline_stage(
            output_log_probs_size, torch.float32, output_log_probs)
282
283

    return tokens, generated_sequence_lengths, output_log_probs
mshoeybi's avatar
working  
mshoeybi committed
284

285
def beam_search_and_return_on_first_stage(model, tokens, lengths, beam_size, stop_token, num_return_gen, length_penalty):
rprenger's avatar
rprenger committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    args = get_args()
    tokenizer = get_tokenizer()

    batch_size = tokens.size(0)
    assert(batch_size == 1)
    prompt_length = lengths.item()
    final_sequence_length = tokens.size(1)
    final_sequence_length = min(final_sequence_length, args.max_position_embeddings)
    
    # If the context is too big, this happens
    if prompt_length >= final_sequence_length:
        raise ValueError("context length + tokens_to_generate too large")

    # forward step.
    forward_step = ForwardStep(model, beam_size, final_sequence_length)

302
    beam_hyp = BeamHypotheses(beam_size, length_penalty)
Peng Xu's avatar
Peng Xu committed
303
    done = False
304
305
306
    scores = torch.zeros(beam_size,
                         dtype=torch.float32,
                         device=torch.cuda.current_device()).unsqueeze(1)
rprenger's avatar
rprenger committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    # =============
    # Run infernece
    # =============
    with torch.no_grad():
        tokens = tokens.repeat(beam_size, 1)
        attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens)
        prev_context_length = 0
        for context_length in range(prompt_length, final_sequence_length):

            # Pick the slice that we need to pass through the network.
            tokens2use = tokens[:, prev_context_length:context_length]
            positions2use = position_ids[:, prev_context_length:context_length]
            attention_mask2use = attention_mask[
                ..., prev_context_length:context_length, :context_length]

            # logits will be meanigful only in the last pipeline stage.
            logits = forward_step(tokens2use, positions2use, attention_mask2use)

            if mpu.is_pipeline_last_stage():
326
                vocab_size = logits.size(2)
rprenger's avatar
rprenger committed
327
328
329
330
331
332
333
334
                log_probs = F.log_softmax(logits, dim=2)
                new_scores = log_probs[:, -1, :] + scores

                if context_length == prompt_length:  # if this is the first one
                    sorted_scores, indices = torch.sort(new_scores[0,:], descending=True)
                else:
                    sorted_scores, indices = torch.sort(new_scores.view(-1), descending=True)

Peng Xu's avatar
Peng Xu committed
335
336
337
338
339
340
341
342
343
344
345
346
347
                best_beam_ids = torch.div(indices[: 2 * beam_size], vocab_size).trunc().long()
                best_words = indices[:2 * beam_size] % vocab_size
                best_scores = sorted_scores[: 2 * beam_size]

                next_beams = []
                for beam_token_rank, (token_id, beam_score, beam_id) in enumerate(
                    zip(best_words, best_scores, best_beam_ids)
                ):
                    if token_id.item() == stop_token:
                        # if beam_token does not belong to top num_beams tokens, it should not be added
                        is_beam_token_worse_than_top_num_beams = beam_token_rank >= beam_size
                        if is_beam_token_worse_than_top_num_beams:
                            continue
348
                        beam_hyp.add(
Peng Xu's avatar
Peng Xu committed
349
350
351
352
353
354
355
356
357
358
359
                            tokens[beam_id].clone(),
                            beam_score,
                            context_length + 1 - prompt_length
                        )
                    else:
                        # add next predicted token since it is not eos_token
                        next_beams.append((token_id, beam_score, beam_id))

                    if len(next_beams) == beam_size:
                        break

360
                if beam_hyp.is_done(best_scores.max().item(), context_length + 1 - prompt_length):
Peng Xu's avatar
Peng Xu committed
361
362
                    done = True
                    break
rprenger's avatar
rprenger committed
363
                
Peng Xu's avatar
Peng Xu committed
364
                best_batches = tokens.new([item[2] for item in next_beams])
rprenger's avatar
rprenger committed
365
                tokens = tokens[best_batches,:]
Peng Xu's avatar
Peng Xu committed
366
367
                tokens[:, context_length] = tokens.new([item[0] for item in next_beams])
                scores = scores.new([item[1] for item in next_beams]).unsqueeze(1)
rprenger's avatar
rprenger committed
368
            
Peng Xu's avatar
Peng Xu committed
369
370
371
                # set inference key values to make it consistent with best beam index
                forward_step.inference_params.swap_key_value_dict(best_batches)

rprenger's avatar
rprenger committed
372
373
374
375
376
377
378
379
380
381
            # Update the tokens on the first stage so the next input to
            # the network is correct.
            copy_from_last_to_first_pipeline_stage(batch_size, torch.int64,
                                                   tokens[:, context_length])

            # Update the context length for the next token generation.
            prev_context_length = context_length
    
        copy_from_last_to_first_pipeline_stage(scores.size(0), torch.float32,
                                               scores[:,0])
Peng Xu's avatar
Peng Xu committed
382
383
384
385

        # if cannot find stop token, add open beams to hyps
        if not done:
            for beam_id in range(beam_size):
386
                beam_hyp.add(tokens[beam_id].clone(), scores[beam_id], context_length + 1 - prompt_length)
Peng Xu's avatar
Peng Xu committed
387
388

        # rank based on scores
389
        sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0], reverse=True)
peng xu's avatar
peng xu committed
390
        num_return_gen = min(num_return_gen, len(sorted_hyps))
391
392
393
394
        scores = [sorted_hyps[i][0] for i in range(num_return_gen)]
        tokens = [sorted_hyps[i][1] for i in range(num_return_gen)]
        scores = torch.stack(scores, dim=0)
        tokens = torch.stack(tokens, dim=0)
Peng Xu's avatar
Peng Xu committed
395

rprenger's avatar
rprenger committed
396
397
    return tokens, scores

mshoeybi's avatar
mshoeybi committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411

def _build_attention_mask_and_position_ids(tokens):
    """Build the attention mask and postition ids for the input tokens."""

    # Since we are not interested in loss-mask and reset attention/position
    # is also False, eod_token is not used so it is safe to set it to None.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
        data=tokens,
        eod_token=None,
        reset_position_ids=False,
        reset_attention_mask=False,
        eod_mask_loss=False)

    return attention_mask, position_ids