generation.py 10.9 KB
Newer Older
mshoeybi's avatar
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Generation utilities."""

import torch
import torch.nn.functional as F

mshoeybi's avatar
working  
mshoeybi committed
21
from megatron import get_args, get_tokenizer, mpu
mshoeybi's avatar
mshoeybi committed
22
23
24
from megatron.utils import get_ltor_masks_and_position_ids
from .communication import (
    copy_from_last_to_first_pipeline_stage,
mshoeybi's avatar
working  
mshoeybi committed
25
26
    broadcast_from_last_pipeline_stage,
    broadcast_from_last_to_first_pipeline_stage)
mshoeybi's avatar
mshoeybi committed
27
from .forward_step import ForwardStep
mshoeybi's avatar
mshoeybi committed
28
29
30
from .sampling import sample


mshoeybi's avatar
working  
mshoeybi committed
31
32
33
34
def generate_tokens_probs_and_return_on_first_stage(
        model, tokens, lengths,
        return_output_log_probs=False,
        return_all_log_probs=False,
mshoeybi's avatar
mshoeybi committed
35
36
37
        greedy=False, top_k=0, top_p=0.0,
        temperature=1.0,
        use_eod_token_for_early_termination=True):
mshoeybi's avatar
working  
mshoeybi committed
38
39
    """Main token generation function.
    Arguments:
mshoeybi's avatar
mshoeybi committed
40
        model: no interleaving is supported.
mshoeybi's avatar
working  
mshoeybi committed
41
42
43
44
45
46
47
48
        tokens: prompt tokens extended to be of size [b, max-sequence-length]
        lengths: original prompt length, size: [b]
        return_output_log_probs: flag to calculate the log probability of
            the generated tokens. Note that the log probability is the one
            after logits are modifed for sampling.
        return_all_log_probs: flag to calculate the log probability of across
            all the tokens (vocab size). Note that the log probability is the
            one after logits are modifed for sampling.
mshoeybi's avatar
mshoeybi committed
49
50
51
52
53
        greedy, top_k, top_p: greedy, top-k, and top-p sampling parameters.
            Note that these three paramters are exclusive meaning that:
                if greedy = true then we should have top-k=top-p=0.
                if top-k > 0 then we expect greedy=false and top-p=0.
                if top-p > 0 then we check for greedy=false and top-k=0.
mshoeybi's avatar
working  
mshoeybi committed
54
        temperature: sampling temperature.
mshoeybi's avatar
mshoeybi committed
55
56
        use_eod_token_for_early_termination: if True, do early termination if
            all the sequences have reached this token.
mshoeybi's avatar
working  
mshoeybi committed
57
58
59
60
61
62
63
64
65
66
67
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: Note that is size is adjusted to a lower value than
             max-sequence-length if generation is terminated early.
        tokens: prompt and generated tokens. size: [b, :]
        generated_sequence_lengths: total length (including prompt) of
            the generated sequence. size: [b]
        output_log_probs: log probability of the selected tokens. size: [b, s]
        all_log_probs: log probability of all the tokens.
            size: [b, s, vocab-size]
    """
mshoeybi's avatar
mshoeybi committed
68
69
70
71
72
73
74
75
76

    args = get_args()
    tokenizer = get_tokenizer()

    batch_size = tokens.size(0)
    min_prompt_length = lengths.min().item()
    max_sequence_length = tokens.size(1)
    max_sequence_length = min(max_sequence_length, args.max_position_embeddings)

mshoeybi's avatar
mshoeybi committed
77
    # forward step.
mshoeybi's avatar
mshoeybi committed
78
    forward_step = ForwardStep(model, batch_size, max_sequence_length)
mshoeybi's avatar
mshoeybi committed
79

mshoeybi's avatar
mshoeybi committed
80
81
82
83
84
85
86
87
88
89
90
    # Added termination_id to support the case that we want to terminate the
    # generation once that id is generated.
    if hasattr(args, 'eos_id'):
        termination_id = args.eos_id
    else:
        termination_id = tokenizer.eod

    # ===================
    # Pre-allocate memory
    # ===================

mshoeybi's avatar
working  
mshoeybi committed
91
92
93
94
95
96
97
    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
    output_log_probs_size = (batch_size, max_sequence_length - 1)
    # Log probability of all tokens for the sequence.
    all_log_probs = None
    all_log_probs_size = (batch_size, max_sequence_length -1,
                          args.padded_vocab_size)
mshoeybi's avatar
mshoeybi committed
98
    # Lengths of generated seuquence including including prompts.
mshoeybi's avatar
working  
mshoeybi committed
99
100
101
102
103
104
105
106
107
108
109
110
111
    generated_sequence_lengths = None
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = torch.empty(output_log_probs_size,
                                           dtype=torch.float32,
                                           device=torch.cuda.current_device())
        if return_all_log_probs:
            all_log_probs = torch.empty(all_log_probs_size,
                                        dtype=torch.float32,
                                        device=torch.cuda.current_device())
        generated_sequence_lengths = torch.ones(
            batch_size, dtype=torch.int64,
            device=torch.cuda.current_device()) * max_sequence_length
mshoeybi's avatar
mshoeybi committed
112
113
114
115
    # Whether we have reached a termination id.
    is_generation_done = torch.zeros(batch_size, dtype=torch.uint8,
                                     device=torch.cuda.current_device())

mshoeybi's avatar
working  
mshoeybi committed
116
117
118
119
    # =============
    # Run infernece
    # =============

mshoeybi's avatar
mshoeybi committed
120
    with torch.no_grad():
mshoeybi's avatar
mshoeybi committed
121
122
        attention_mask, position_ids = _build_attention_mask_and_position_ids(
            tokens)
mshoeybi's avatar
mshoeybi committed
123
124
125
126
127
128
129
130
131
132
        prev_context_length = 0
        for context_length in range(min_prompt_length, max_sequence_length):

            # Pick the slice that we need to pass through the network.
            tokens2use = tokens[:, prev_context_length:context_length]
            positions2use = position_ids[:, prev_context_length:context_length]
            attention_mask2use = attention_mask[
                ..., prev_context_length:context_length, :context_length]

            # logits will be meanigful only in the last pipeline stage.
mshoeybi's avatar
mshoeybi committed
133
            logits = forward_step(tokens2use, positions2use, attention_mask2use)
mshoeybi's avatar
mshoeybi committed
134
135
136
137
138
139
140
141
142

            if mpu.is_pipeline_last_stage():
                # Always the last stage should have an output.
                assert logits is not None

                # Sample.
                last_token_logits = logits[:, -1, :]
                new_sample, updated_last_token_logits = sample(
                    last_token_logits,
mshoeybi's avatar
mshoeybi committed
143
144
145
                    greedy=greedy,
                    top_k=top_k,
                    top_p=top_p,
mshoeybi's avatar
mshoeybi committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
                    temperature=temperature,
                    vocab_size=tokenizer.vocab_size)
                # Now that we have the sample and updated logits,
                # update the main logits and input tokens.
                # If a prompt length is smaller or equal th current context
                # length, it means we have started generating tokens
                started = lengths <= context_length
                # Update the logits
                last_token_logits.masked_scatter_(
                    started.unsqueeze(1), updated_last_token_logits[started])
                # and the tokens.
                tokens[started, context_length] = new_sample[started]

                # Calculate the log probabilities.
mshoeybi's avatar
working  
mshoeybi committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
                if return_output_log_probs or return_all_log_probs:
                    log_probs = F.log_softmax(logits, dim=2)
                    if return_all_log_probs:
                        all_log_probs[:,
                                      prev_context_length:context_length,
                                      :] = log_probs
                    if return_output_log_probs:
                        # Pick the tokens that we need to get the log
                        # probabilities for. Note that next input token is
                        # the token which we selected in the current logits,
                        # so shift by 1.
                        indices = torch.unsqueeze(
                            tokens[
                                :,
                                (prev_context_length + 1):(context_length + 1)],
                            2)
                        output_log_probs[:,
                                         prev_context_length:context_length] = \
                            torch.gather(log_probs, 2, indices).squeeze(2)
mshoeybi's avatar
mshoeybi committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

            # Update the tokens on the first stage so the next input to
            # the network is correct.
            copy_from_last_to_first_pipeline_stage(batch_size, torch.int64,
                                                   tokens[:, context_length])

            # Update the context length for the next token generation.
            prev_context_length = context_length

            # Check if all the sequences have hit the termination_id.
            done = None
            if mpu.is_pipeline_last_stage():
                done_token = (new_sample == termination_id).byte() & \
                    started.byte()
                just_finished = (done_token & ~is_generation_done).bool()
                generated_sequence_lengths[just_finished.view(-1)] = \
                    context_length + 1
                is_generation_done = is_generation_done | done_token
                done = torch.all(is_generation_done)
            done = broadcast_from_last_pipeline_stage(1, torch.uint8,
                                                      tensor=done)
mshoeybi's avatar
mshoeybi committed
200
201
            if use_eod_token_for_early_termination and done:
                break
mshoeybi's avatar
mshoeybi committed
202

mshoeybi's avatar
working  
mshoeybi committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    # ===================================================
    # Update the length of based on max generated length.
    # ===================================================

    tokens = tokens[:, :(context_length + 1)]
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = output_log_probs[:, :context_length]
        if return_all_log_probs:
            all_log_probs = all_log_probs[:, :context_length, :]

    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================

    generated_sequence_lengths = broadcast_from_last_to_first_pipeline_stage(
        batch_size, torch.int64, generated_sequence_lengths)
    if return_output_log_probs:
        output_log_probs_size = (batch_size, context_length)
        output_log_probs = broadcast_from_last_to_first_pipeline_stage(
            output_log_probs_size, torch.float32, output_log_probs)
    if return_all_log_probs:
        all_log_probs_size = (batch_size, context_length,
                              args.padded_vocab_size)
        all_log_probs = broadcast_from_last_to_first_pipeline_stage(
            all_log_probs_size, torch.float32, all_log_probs)

    return tokens, generated_sequence_lengths, output_log_probs, \
        all_log_probs

mshoeybi's avatar
mshoeybi committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247


def _build_attention_mask_and_position_ids(tokens):
    """Build the attention mask and postition ids for the input tokens."""

    # Since we are not interested in loss-mask and reset attention/position
    # is also False, eod_token is not used so it is safe to set it to None.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
        data=tokens,
        eod_token=None,
        reset_position_ids=False,
        reset_attention_mask=False,
        eod_mask_loss=False)

    return attention_mask, position_ids