indexed_dataset.py 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


# copied from fairseq/fairseq/data/indexed_dataset.py
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
# other slight modifications to remove fairseq dependencies
10
11
# Added document index to index file and made it accessible.
#    An empty sentence no longer separates documents.
12
13
14
15
16

from functools import lru_cache
import os
import shutil
import struct
17
from itertools import accumulate
18
19
20

import numpy as np
import torch
21
from megatron import print_rank_0
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

def __best_fitting_dtype(vocab_size=None):
    if vocab_size is not None and vocab_size < 65500:
        return np.uint16
    else:
        return np.int32


def get_available_dataset_impl():
    return ['lazy', 'cached', 'mmap']


def infer_dataset_impl(path):
    if IndexedDataset.exists(path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            if magic == IndexedDataset._HDR_MAGIC:
                return 'cached'
            elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
                return 'mmap'
            else:
                return None
    else:
45
        print(f"Dataset path does not exist: {path}")
46
47
48
49
50
51
52
53
54
55
        return None


def make_builder(out_file, impl, vocab_size=None):
    if impl == 'mmap':
        return MMapIndexedDatasetBuilder(out_file, dtype=__best_fitting_dtype(vocab_size))
    else:
        return IndexedDatasetBuilder(out_file)


56
57
58
def make_dataset(path, impl, skip_warmup=False):
    if impl == 'infer':
        impl = infer_dataset_impl(path)
59
    if impl == 'lazy' and IndexedDataset.exists(path):
60
        return IndexedDataset(path)
61
    elif impl == 'cached' and IndexedDataset.exists(path):
62
        return IndexedCachedDataset(path)
63
    elif impl == 'mmap' and MMapIndexedDataset.exists(path):
64
        return MMapIndexedDataset(path, skip_warmup)
65
    print(f"Unknown dataset implementation: {impl}")
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    return None


def dataset_exists(path, impl):
    if impl == 'mmap':
        return MMapIndexedDataset.exists(path)
    else:
        return IndexedDataset.exists(path)


def read_longs(f, n):
    a = np.empty(n, dtype=np.int64)
    f.readinto(a)
    return a


def write_longs(f, a):
    f.write(np.array(a, dtype=np.int64))


dtypes = {
    1: np.uint8,
    2: np.int8,
    3: np.int16,
    4: np.int32,
    5: np.int64,
    6: np.float,
    7: np.double,
    8: np.uint16
}


def code(dtype):
    for k in dtypes.keys():
        if dtypes[k] == dtype:
            return k
    raise ValueError(dtype)


def index_file_path(prefix_path):
    return prefix_path + '.idx'


def data_file_path(prefix_path):
    return prefix_path + '.bin'

112
113
114
115
116
117
def create_doc_idx(sizes):
    doc_idx = [0]
    for i, s in enumerate(sizes):
        if s == 0:
            doc_idx.append(i+1)
    return doc_idx
118
119
120
121
122

class IndexedDataset(torch.utils.data.Dataset):
    """Loader for IndexedDataset"""
    _HDR_MAGIC = b'TNTIDX\x00\x00'

123
    def __init__(self, path):
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        super().__init__()
        self.path = path
        self.data_file = None
        self.read_index(path)

    def read_index(self, path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            assert magic == self._HDR_MAGIC, (
                'Index file doesn\'t match expected format. '
                'Make sure that --dataset-impl is configured properly.'
            )
            version = f.read(8)
            assert struct.unpack('<Q', version) == (1,)
            code, self.element_size = struct.unpack('<QQ', f.read(16))
            self.dtype = dtypes[code]
            self._len, self.s = struct.unpack('<QQ', f.read(16))
141
            self.doc_count = struct.unpack('<Q', f.read(8))
142
143
144
            self.dim_offsets = read_longs(f, self._len + 1)
            self.data_offsets = read_longs(f, self._len + 1)
            self.sizes = read_longs(f, self.s)
145
            self.doc_idx = read_longs(f, self.doc_count)
146
147
148
149
150
151
152
153
154
155
156
157

    def read_data(self, path):
        self.data_file = open(data_file_path(path), 'rb', buffering=0)

    def check_index(self, i):
        if i < 0 or i >= self._len:
            raise IndexError('index out of range')

    def __del__(self):
        if self.data_file:
            self.data_file.close()

158
159
    #@lru_cache(maxsize=8)
    def __getitem__(self, idx):
160
161
        if not self.data_file:
            self.read_data(self.path)
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            return a
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            sizes = self.sizes[self.dim_offsets[start]:self.dim_offsets[stop]]
            size = sum(sizes)
            a = np.empty(size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[start] * self.element_size)
            self.data_file.readinto(a)
            offsets = list(accumulate(sizes))
            sents = np.split(a, offsets[:-1])
            return sents
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    def __len__(self):
        return self._len

    def num_tokens(self, index):
        return self.sizes[index]

    def size(self, index):
        return self.sizes[index]

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )

    @property
    def supports_prefetch(self):
        return False  # avoid prefetching to save memory


class IndexedCachedDataset(IndexedDataset):

205
206
    def __init__(self, path):
        super().__init__(path)
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        self.cache = None
        self.cache_index = {}

    @property
    def supports_prefetch(self):
        return True

    def prefetch(self, indices):
        if all(i in self.cache_index for i in indices):
            return
        if not self.data_file:
            self.read_data(self.path)
        indices = sorted(set(indices))
        total_size = 0
        for i in indices:
            total_size += self.data_offsets[i + 1] - self.data_offsets[i]
        self.cache = np.empty(total_size, dtype=self.dtype)
        ptx = 0
        self.cache_index.clear()
        for i in indices:
            self.cache_index[i] = ptx
            size = self.data_offsets[i + 1] - self.data_offsets[i]
            a = self.cache[ptx: ptx + size]
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            ptx += size
        if self.data_file:
            # close and delete data file after prefetch so we can pickle
            self.data_file.close()
            self.data_file = None

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    #@lru_cache(maxsize=8)
    def __getitem__(self, idx):
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            ptx = self.cache_index[i]
            np.copyto(a, self.cache[ptx: ptx + a.size])
            return a
        elif isinstance(idx, slice):
            # Hack just to make this work, can optimizer later if necessary
            sents = []
            for i in range(*idx.indices(len(self))):
                sents.append(self[i])
            return sents
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273


class IndexedDatasetBuilder(object):
    element_sizes = {
        np.uint8: 1,
        np.int8: 1,
        np.int16: 2,
        np.int32: 4,
        np.int64: 8,
        np.float: 4,
        np.double: 8
    }

    def __init__(self, out_file, dtype=np.int32):
        self.out_file = open(out_file, 'wb')
        self.dtype = dtype
        self.data_offsets = [0]
        self.dim_offsets = [0]
        self.sizes = []
        self.element_size = self.element_sizes[self.dtype]
274
        self.doc_idx = [0]
275
276

    def add_item(self, tensor):
277
        bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype))
278
279
280
281
282
        self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
        for s in tensor.size():
            self.sizes.append(s)
        self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))

283
284
285
    def end_document(self):
        self.doc_idx.append(len(self.sizes))

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    def merge_file_(self, another_file):
        index = IndexedDataset(another_file)
        assert index.dtype == self.dtype

        begin = self.data_offsets[-1]
        for offset in index.data_offsets[1:]:
            self.data_offsets.append(begin + offset)
        self.sizes.extend(index.sizes)
        begin = self.dim_offsets[-1]
        for dim_offset in index.dim_offsets[1:]:
            self.dim_offsets.append(begin + dim_offset)

        with open(data_file_path(another_file), 'rb') as f:
            while True:
                data = f.read(1024)
                if data:
                    self.out_file.write(data)
                else:
                    break

    def finalize(self, index_file):
        self.out_file.close()
        index = open(index_file, 'wb')
        index.write(b'TNTIDX\x00\x00')
        index.write(struct.pack('<Q', 1))
        index.write(struct.pack('<QQ', code(self.dtype), self.element_size))
        index.write(struct.pack('<QQ', len(self.data_offsets) - 1, len(self.sizes)))
313
        index.write(struct.pack('<Q', len(self.doc_idx)))
314
315
316
        write_longs(index, self.dim_offsets)
        write_longs(index, self.data_offsets)
        write_longs(index, self.sizes)
317
        write_longs(index, self.doc_idx)
318
319
320
321
322
        index.close()


def _warmup_mmap_file(path):
    with open(path, 'rb') as stream:
323
        while stream.read(100 * 1024 * 1024):
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
            pass


class MMapIndexedDataset(torch.utils.data.Dataset):
    class Index(object):
        _HDR_MAGIC = b'MMIDIDX\x00\x00'

        @classmethod
        def writer(cls, path, dtype):
            class _Writer(object):
                def __enter__(self):
                    self._file = open(path, 'wb')

                    self._file.write(cls._HDR_MAGIC)
                    self._file.write(struct.pack('<Q', 1))
                    self._file.write(struct.pack('<B', code(dtype)))

                    return self

                @staticmethod
                def _get_pointers(sizes):
                    dtype_size = dtype().itemsize
                    address = 0
                    pointers = []

                    for size in sizes:
                        pointers.append(address)
                        address += size * dtype_size

                    return pointers

355
                def write(self, sizes, doc_idx):
356
357
358
                    pointers = self._get_pointers(sizes)

                    self._file.write(struct.pack('<Q', len(sizes)))
359
                    self._file.write(struct.pack('<Q', len(doc_idx)))
360
361
362
363
364
365
366
367
368

                    sizes = np.array(sizes, dtype=np.int32)
                    self._file.write(sizes.tobytes(order='C'))
                    del sizes

                    pointers = np.array(pointers, dtype=np.int64)
                    self._file.write(pointers.tobytes(order='C'))
                    del pointers

369
370
371
                    doc_idx = np.array(doc_idx, dtype=np.int64)
                    self._file.write(doc_idx.tobytes(order='C'))

372
373
374
375
376
                def __exit__(self, exc_type, exc_val, exc_tb):
                    self._file.close()

            return _Writer()

377
        def __init__(self, path, skip_warmup=False):
378
379
380
381
382
383
384
385
386
387
388
389
390
391
            with open(path, 'rb') as stream:
                magic_test = stream.read(9)
                assert self._HDR_MAGIC == magic_test, (
                    'Index file doesn\'t match expected format. '
                    'Make sure that --dataset-impl is configured properly.'
                )
                version = struct.unpack('<Q', stream.read(8))
                assert (1,) == version

                dtype_code, = struct.unpack('<B', stream.read(1))
                self._dtype = dtypes[dtype_code]
                self._dtype_size = self._dtype().itemsize

                self._len = struct.unpack('<Q', stream.read(8))[0]
392
                self._doc_count = struct.unpack('<Q', stream.read(8))[0]
393
394
                offset = stream.tell()

395
            if not skip_warmup:
396
                print_rank_0("    warming up index mmap file...")
397
                _warmup_mmap_file(path)
398
399
400

            self._bin_buffer_mmap = np.memmap(path, mode='r', order='C')
            self._bin_buffer = memoryview(self._bin_buffer_mmap)
401
            print_rank_0("    reading sizes...")
402
            self._sizes = np.frombuffer(self._bin_buffer, dtype=np.int32, count=self._len, offset=offset)
403
            print_rank_0("    reading pointers...")
404
405
            self._pointers = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._len,
                                           offset=offset + self._sizes.nbytes)
406
            print_rank_0("    reading document index...")
407
408
            self._doc_idx = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._doc_count,
                                          offset=offset + self._sizes.nbytes + self._pointers.nbytes)
409
410
411
412
413
414
415
416
417
418
419
420
        def __del__(self):
            self._bin_buffer_mmap._mmap.close()
            del self._bin_buffer_mmap

        @property
        def dtype(self):
            return self._dtype

        @property
        def sizes(self):
            return self._sizes

421
422
423
424
        @property
        def doc_idx(self):
            return self._doc_idx

425
426
427
428
429
430
431
        @lru_cache(maxsize=8)
        def __getitem__(self, i):
            return self._pointers[i], self._sizes[i]

        def __len__(self):
            return self._len

432
    def __init__(self, path, skip_warmup=False):
433
434
435
436
437
438
        super().__init__()

        self._path = None
        self._index = None
        self._bin_buffer = None

439
        self._do_init(path, skip_warmup)
440
441
442
443
444
445
446

    def __getstate__(self):
        return self._path

    def __setstate__(self, state):
        self._do_init(state)

447
    def _do_init(self, path, skip_warmup):
448
        self._path = path
449
        self._index = self.Index(index_file_path(self._path), skip_warmup)
450

451
        if not skip_warmup:
452
            print_rank_0("    warming up data mmap file...")
453
            _warmup_mmap_file(data_file_path(self._path))
454
        print_rank_0("    creating numpy buffer of mmap...")
455
        self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode='r', order='C')
456
        print_rank_0("    creating memory view of numpy buffer...")
457
458
459
460
461
462
463
464
465
466
        self._bin_buffer = memoryview(self._bin_buffer_mmap)

    def __del__(self):
        self._bin_buffer_mmap._mmap.close()
        del self._bin_buffer_mmap
        del self._index

    def __len__(self):
        return len(self._index)

467
468
469
470
    #@lru_cache(maxsize=8)
    def __getitem__(self, idx):
        if isinstance(idx, int):
            ptr, size = self._index[idx]
471
472
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                     count=size, offset=ptr)
473
474
            if self._index.dtype != np.int64:
                np_array = np_array.astype(np.int64)
475
            return np_array
476
477
478
479
480
481
482
483
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            ptr = self._index._pointers[start]
            sizes = self._index._sizes[idx]
            offsets = list(accumulate(sizes))
            total_size = sum(sizes)
484
485
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                     count=total_size, offset=ptr)
486
487
            sents = np.split(np_array, offsets[:-1])
            return sents
488

489
    def get(self, idx, offset=0, length=None):
490
491
492
493
494
        """ Retrieves a single item from the dataset with the option to only
        return a portion of the item.

        get(idx) is the same as [idx] but get() does not support slicing.
        """
495
496
497
498
499
500
501
502
503
504
        ptr, size = self._index[idx]
        if length is None:
            length = size - offset
        ptr += offset * np.dtype(self._index.dtype).itemsize
        np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                 count=length, offset=ptr)
        if self._index.dtype != np.int64:
            np_array = np_array.astype(np.int64)
        return np_array

505
506
507
508
    @property
    def sizes(self):
        return self._index.sizes

509
510
511
512
    @property
    def doc_idx(self):
        return self._index.doc_idx

513
514
515
516
517
518
    def get_doc_idx(self):
        return self._index._doc_idx

    def set_doc_idx(self, doc_idx_):
        self._index._doc_idx = doc_idx_

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    @property
    def supports_prefetch(self):
        return False

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )


class MMapIndexedDatasetBuilder(object):
    def __init__(self, out_file, dtype=np.int64):
        self._data_file = open(out_file, 'wb')
        self._dtype = dtype
        self._sizes = []
535
        self._doc_idx = [0]
536
537
538
539
540
541

    def add_item(self, tensor):
        np_array = np.array(tensor.numpy(), dtype=self._dtype)
        self._data_file.write(np_array.tobytes(order='C'))
        self._sizes.append(np_array.size)

542
543
544
    def end_document(self):
        self._doc_idx.append(len(self._sizes))

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    def merge_file_(self, another_file):
        # Concatenate index
        index = MMapIndexedDataset.Index(index_file_path(another_file))
        assert index.dtype == self._dtype

        for size in index.sizes:
            self._sizes.append(size)

        # Concatenate data
        with open(data_file_path(another_file), 'rb') as f:
            shutil.copyfileobj(f, self._data_file)

    def finalize(self, index_file):
        self._data_file.close()

        with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
561
            index.write(self._sizes, self._doc_idx)