generation.py 18.9 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
mshoeybi's avatar
mshoeybi committed
2
3
4
5
6
7

"""Generation utilities."""

import torch
import torch.nn.functional as F

mshoeybi's avatar
working  
mshoeybi committed
8
from megatron import get_args, get_tokenizer, mpu
mshoeybi's avatar
mshoeybi committed
9
10
11
from megatron.utils import get_ltor_masks_and_position_ids
from .communication import (
    copy_from_last_to_first_pipeline_stage,
mshoeybi's avatar
working  
mshoeybi committed
12
13
    broadcast_from_last_pipeline_stage,
    broadcast_from_last_to_first_pipeline_stage)
mshoeybi's avatar
mshoeybi committed
14
from .forward_step import ForwardStep
mshoeybi's avatar
mshoeybi committed
15
from .sampling import sample
Peng Xu's avatar
Peng Xu committed
16
from .beam_utils import BeamHypotheses
mshoeybi's avatar
mshoeybi committed
17

18
19
MAX_TOKENS_TO_OOM = 12000  # (rprenger) Perfect value depends on hardware and network

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def score_and_return_on_first_stage(model, tokens, lengths):
    """Function for just scoring.
    Arguments:
        model: no interleaving is supported.
        tokens: prompt tokens extended to be of size [b, max_prompt_length]
        lengths: original prompt length, size: [b]
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: 
        output_log_probs: log probability of the selected tokens. size: [b, s]
    """

    args = get_args()

    batch_size = tokens.size(0)
    max_prompt_length = lengths.max().item()
    assert max_prompt_length == tokens.size(1)
37
38
39
40
41
42
    
    if max_prompt_length > args.max_position_embeddings:
        raise ValueError("Length of prompt + tokens_to_generate longer than allowed")
    
    if max_prompt_length * batch_size >= MAX_TOKENS_TO_OOM:
        raise ValueError("Too many tokens.  " + str(max_prompt_length*batch_size)+ " is greater than "+str(MAX_TOKENS_TO_OOM))
43
44

    # forward step.
45
    forward_step = ForwardStep(model, batch_size, max_prompt_length)
46
47
48
49
50
51
52

    # ===================
    # Pre-allocate memory
    # ===================

    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
53
    output_log_probs_size = (batch_size, max_prompt_length - 1)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    
    if mpu.is_pipeline_last_stage():
        output_log_probs = torch.empty(output_log_probs_size,
                                       dtype=torch.float32,
                                       device=torch.cuda.current_device())
    
    # =============
    # Run infernece
    # =============
    with torch.no_grad():
        attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens)
        
        # logits will be meanigful only in the last pipeline stage.
        logits = forward_step(tokens, position_ids, attention_mask)

        if mpu.is_pipeline_last_stage():
            # Always the last stage should have an output.
            assert logits is not None
            log_probs = F.log_softmax(logits, dim=2)
            
            # Pick the tokens that we need to get the log
            # probabilities for. Note that next input token is
            # the token which we selected in the current logits,
            # so shift by 1.
            indices = torch.unsqueeze(tokens[:, 1:], 2)
            output_log_probs = torch.gather(log_probs, 2, indices).squeeze(2)
    
    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================
    output_log_probs = broadcast_from_last_to_first_pipeline_stage(
        output_log_probs_size, torch.float32, output_log_probs)
    
    return tokens, lengths, output_log_probs
mshoeybi's avatar
mshoeybi committed
88

mshoeybi's avatar
working  
mshoeybi committed
89
90
91
def generate_tokens_probs_and_return_on_first_stage(
        model, tokens, lengths,
        return_output_log_probs=False,
92
        top_k=0, top_p=0.0, top_p_decay=0.0, top_p_bound=0.0,
mshoeybi's avatar
mshoeybi committed
93
        temperature=1.0,
94
95
96
97
        use_eod_token_for_early_termination=True,
        stop_on_double_eol=False,
        stop_on_eol=False
        ):
mshoeybi's avatar
working  
mshoeybi committed
98
99
    """Main token generation function.
    Arguments:
mshoeybi's avatar
mshoeybi committed
100
        model: no interleaving is supported.
mshoeybi's avatar
working  
mshoeybi committed
101
102
103
104
        tokens: prompt tokens extended to be of size [b, max-sequence-length]
        lengths: original prompt length, size: [b]
        return_output_log_probs: flag to calculate the log probability of
            the generated tokens. Note that the log probability is the one
mshoeybi's avatar
mshoeybi committed
105
106
107
108
109
110
            from the original logit.
        top_k, top_p: top-k and top-p sampling parameters.
            Note that top-k = 1 is gready. Also, these paramters are
            exclusive meaning that:
                if top-k > 0 then we expect top-p=0.
                if top-p > 0 then we check for top-k=0.
mshoeybi's avatar
working  
mshoeybi committed
111
        temperature: sampling temperature.
mshoeybi's avatar
mshoeybi committed
112
113
        use_eod_token_for_early_termination: if True, do early termination if
            all the sequences have reached this token.
mshoeybi's avatar
working  
mshoeybi committed
114
115
116
117
118
119
120
121
122
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: Note that is size is adjusted to a lower value than
             max-sequence-length if generation is terminated early.
        tokens: prompt and generated tokens. size: [b, :]
        generated_sequence_lengths: total length (including prompt) of
            the generated sequence. size: [b]
        output_log_probs: log probability of the selected tokens. size: [b, s]
    """
mshoeybi's avatar
mshoeybi committed
123
124
125
126
127
128
129

    args = get_args()
    tokenizer = get_tokenizer()

    batch_size = tokens.size(0)
    min_prompt_length = lengths.min().item()
    max_sequence_length = tokens.size(1)
130
131
132

    if max_sequence_length > args.max_position_embeddings:
        raise ValueError("Length of prompt + tokens_to_generate longer than allowed")
133
    
134
135
    if max_sequence_length * batch_size >= MAX_TOKENS_TO_OOM:
        raise ValueError("Too many tokens.  " + str(max_sequence_length*batch_size)+ " is greater than "+str(MAX_TOKENS_TO_OOM))
mshoeybi's avatar
mshoeybi committed
136

mshoeybi's avatar
mshoeybi committed
137
    # forward step.
mshoeybi's avatar
mshoeybi committed
138
    forward_step = ForwardStep(model, batch_size, max_sequence_length)
mshoeybi's avatar
mshoeybi committed
139

mshoeybi's avatar
mshoeybi committed
140
141
142
143
144
145
146
147
148
149
150
    # Added termination_id to support the case that we want to terminate the
    # generation once that id is generated.
    if hasattr(args, 'eos_id'):
        termination_id = args.eos_id
    else:
        termination_id = tokenizer.eod

    # ===================
    # Pre-allocate memory
    # ===================

mshoeybi's avatar
working  
mshoeybi committed
151
152
153
    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
    output_log_probs_size = (batch_size, max_sequence_length - 1)
mshoeybi's avatar
mshoeybi committed
154
    # Lengths of generated seuquence including including prompts.
mshoeybi's avatar
working  
mshoeybi committed
155
156
157
158
159
160
161
    generated_sequence_lengths = None
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = torch.empty(output_log_probs_size,
                                           dtype=torch.float32,
                                           device=torch.cuda.current_device())
        generated_sequence_lengths = torch.ones(
162
163
164
                batch_size, dtype=torch.int64,
                device=torch.cuda.current_device()) * max_sequence_length
    
mshoeybi's avatar
mshoeybi committed
165
166
167
168
    # Whether we have reached a termination id.
    is_generation_done = torch.zeros(batch_size, dtype=torch.uint8,
                                     device=torch.cuda.current_device())

mshoeybi's avatar
working  
mshoeybi committed
169
170
171
172
    # =============
    # Run infernece
    # =============

mshoeybi's avatar
mshoeybi committed
173
    with torch.no_grad():
mshoeybi's avatar
mshoeybi committed
174
175
        attention_mask, position_ids = _build_attention_mask_and_position_ids(
            tokens)
mshoeybi's avatar
mshoeybi committed
176
177
178
179
180
181
182
183
184
185
        prev_context_length = 0
        for context_length in range(min_prompt_length, max_sequence_length):

            # Pick the slice that we need to pass through the network.
            tokens2use = tokens[:, prev_context_length:context_length]
            positions2use = position_ids[:, prev_context_length:context_length]
            attention_mask2use = attention_mask[
                ..., prev_context_length:context_length, :context_length]

            # logits will be meanigful only in the last pipeline stage.
mshoeybi's avatar
mshoeybi committed
186
            logits = forward_step(tokens2use, positions2use, attention_mask2use)
mshoeybi's avatar
mshoeybi committed
187
188
189
190
191
192
193

            if mpu.is_pipeline_last_stage():
                # Always the last stage should have an output.
                assert logits is not None

                # Sample.
                last_token_logits = logits[:, -1, :]
mshoeybi's avatar
mshoeybi committed
194
195
196
197
198
                new_sample = sample(last_token_logits,
                                    top_k=top_k,
                                    top_p=top_p,
                                    temperature=temperature,
                                    vocab_size=tokenizer.vocab_size)
199
200
201
202
                if top_p > 0.0 and top_p_decay > 0.0:
                    top_p = top_p * top_p_decay
                    if top_p_bound > 0.0:
                        top_p = max(top_p, top_p_bound)
203

mshoeybi's avatar
mshoeybi committed
204
205
206
                # If a prompt length is smaller or equal th current context
                # length, it means we have started generating tokens
                started = lengths <= context_length
mshoeybi's avatar
mshoeybi committed
207
                # Update the tokens.
mshoeybi's avatar
mshoeybi committed
208
209
210
                tokens[started, context_length] = new_sample[started]

                # Calculate the log probabilities.
211
                if return_output_log_probs:
mshoeybi's avatar
working  
mshoeybi committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                    log_probs = F.log_softmax(logits, dim=2)
                    if return_output_log_probs:
                        # Pick the tokens that we need to get the log
                        # probabilities for. Note that next input token is
                        # the token which we selected in the current logits,
                        # so shift by 1.
                        indices = torch.unsqueeze(
                            tokens[
                                :,
                                (prev_context_length + 1):(context_length + 1)],
                            2)
                        output_log_probs[:,
                                         prev_context_length:context_length] = \
                            torch.gather(log_probs, 2, indices).squeeze(2)
mshoeybi's avatar
mshoeybi committed
226
227
228
229
230
231
232
233
234
235
236
237

            # Update the tokens on the first stage so the next input to
            # the network is correct.
            copy_from_last_to_first_pipeline_stage(batch_size, torch.int64,
                                                   tokens[:, context_length])

            # Update the context length for the next token generation.
            prev_context_length = context_length

            # Check if all the sequences have hit the termination_id.
            done = None
            if mpu.is_pipeline_last_stage():
rprenger's avatar
rprenger committed
238
239
                # TODO(rprenger) These stopping methods are tokenizer dependent
                # instead tokenization should be in the inference loop so stop sequences can be used
240
241
242
243
244
245
246
247
248
249
250
251
                if stop_on_double_eol:
                    hit_double_eol = (new_sample == 628).byte() & started.byte()
                    hit_two_eols = (new_sample == 198).byte() & (tokens[:, context_length-1] == 198).byte() & started.byte()
                    done_token = hit_double_eol | hit_two_eols
                elif stop_on_eol:
                    hit_double_eol = (new_sample == 628).byte() & started.byte()
                    hit_eol = (new_sample == 198).byte() & started.byte()
                    done_token = hit_double_eol | hit_eol
                else: 
                    done_token = (new_sample == termination_id).byte() & \
                        started.byte()
                
mshoeybi's avatar
mshoeybi committed
252
253
254
255
256
257
258
                just_finished = (done_token & ~is_generation_done).bool()
                generated_sequence_lengths[just_finished.view(-1)] = \
                    context_length + 1
                is_generation_done = is_generation_done | done_token
                done = torch.all(is_generation_done)
            done = broadcast_from_last_pipeline_stage(1, torch.uint8,
                                                      tensor=done)
mshoeybi's avatar
mshoeybi committed
259
260
            if use_eod_token_for_early_termination and done:
                break
Peng Xu's avatar
Peng Xu committed
261
            
mshoeybi's avatar
working  
mshoeybi committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    # ===================================================
    # Update the length of based on max generated length.
    # ===================================================

    tokens = tokens[:, :(context_length + 1)]
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = output_log_probs[:, :context_length]

    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================

    generated_sequence_lengths = broadcast_from_last_to_first_pipeline_stage(
        batch_size, torch.int64, generated_sequence_lengths)
    if return_output_log_probs:
        output_log_probs_size = (batch_size, context_length)
        output_log_probs = broadcast_from_last_to_first_pipeline_stage(
            output_log_probs_size, torch.float32, output_log_probs)
281
282

    return tokens, generated_sequence_lengths, output_log_probs
mshoeybi's avatar
working  
mshoeybi committed
283

284
def beam_search_and_return_on_first_stage(model, tokens, lengths, beam_size, stop_token, num_return_gen, length_penalty):
rprenger's avatar
rprenger committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    args = get_args()
    tokenizer = get_tokenizer()

    batch_size = tokens.size(0)
    assert(batch_size == 1)
    prompt_length = lengths.item()
    final_sequence_length = tokens.size(1)
    final_sequence_length = min(final_sequence_length, args.max_position_embeddings)
    
    # If the context is too big, this happens
    if prompt_length >= final_sequence_length:
        raise ValueError("context length + tokens_to_generate too large")

    # forward step.
    forward_step = ForwardStep(model, beam_size, final_sequence_length)

301
    beam_hyp = BeamHypotheses(beam_size, length_penalty)
302
303
    best_batches = None
    done = torch.zeros(1, dtype=torch.uint8, device=torch.cuda.current_device())
304
305
306
    scores = torch.zeros(beam_size,
                         dtype=torch.float32,
                         device=torch.cuda.current_device()).unsqueeze(1)
307
    scores_size_tensor, tokens_size_tensor = None, None
rprenger's avatar
rprenger committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    # =============
    # Run infernece
    # =============
    with torch.no_grad():
        tokens = tokens.repeat(beam_size, 1)
        attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens)
        prev_context_length = 0
        for context_length in range(prompt_length, final_sequence_length):

            # Pick the slice that we need to pass through the network.
            tokens2use = tokens[:, prev_context_length:context_length]
            positions2use = position_ids[:, prev_context_length:context_length]
            attention_mask2use = attention_mask[
                ..., prev_context_length:context_length, :context_length]

            # logits will be meanigful only in the last pipeline stage.
            logits = forward_step(tokens2use, positions2use, attention_mask2use)

            if mpu.is_pipeline_last_stage():
327
                vocab_size = logits.size(2)
rprenger's avatar
rprenger committed
328
329
330
331
332
333
334
335
                log_probs = F.log_softmax(logits, dim=2)
                new_scores = log_probs[:, -1, :] + scores

                if context_length == prompt_length:  # if this is the first one
                    sorted_scores, indices = torch.sort(new_scores[0,:], descending=True)
                else:
                    sorted_scores, indices = torch.sort(new_scores.view(-1), descending=True)

Peng Xu's avatar
Peng Xu committed
336
337
338
339
340
341
342
343
344
345
346
347
348
                best_beam_ids = torch.div(indices[: 2 * beam_size], vocab_size).trunc().long()
                best_words = indices[:2 * beam_size] % vocab_size
                best_scores = sorted_scores[: 2 * beam_size]

                next_beams = []
                for beam_token_rank, (token_id, beam_score, beam_id) in enumerate(
                    zip(best_words, best_scores, best_beam_ids)
                ):
                    if token_id.item() == stop_token:
                        # if beam_token does not belong to top num_beams tokens, it should not be added
                        is_beam_token_worse_than_top_num_beams = beam_token_rank >= beam_size
                        if is_beam_token_worse_than_top_num_beams:
                            continue
349
                        beam_hyp.add(
Peng Xu's avatar
Peng Xu committed
350
351
352
353
354
355
356
357
358
359
360
                            tokens[beam_id].clone(),
                            beam_score,
                            context_length + 1 - prompt_length
                        )
                    else:
                        # add next predicted token since it is not eos_token
                        next_beams.append((token_id, beam_score, beam_id))

                    if len(next_beams) == beam_size:
                        break

361
                if beam_hyp.is_done(best_scores.max().item(), context_length + 1 - prompt_length):
362
363
                    done = torch.ones(1, dtype=torch.uint8, device=torch.cuda.current_device())
            
Peng Xu's avatar
Peng Xu committed
364
                best_batches = tokens.new([item[2] for item in next_beams])
rprenger's avatar
rprenger committed
365
                tokens = tokens[best_batches,:]
Peng Xu's avatar
Peng Xu committed
366
367
                tokens[:, context_length] = tokens.new([item[0] for item in next_beams])
                scores = scores.new([item[1] for item in next_beams]).unsqueeze(1)
368
369
370
371
372
          
            # torch.distributed.barrier()
            done = broadcast_from_last_pipeline_stage(1, torch.uint8, done)
            if done:
                break
Peng Xu's avatar
Peng Xu committed
373

rprenger's avatar
rprenger committed
374
375
            # Update the tokens on the first stage so the next input to
            # the network is correct.
376
377
378
379
380
381
            copy_from_last_to_first_pipeline_stage(tokens.size(), torch.int64,
                                                   tokens)

            # set inference key values to make it consistent with best beam index
            best_batches = broadcast_from_last_pipeline_stage(beam_size, torch.int64, best_batches)
            forward_step.inference_params.swap_key_value_dict(best_batches)
rprenger's avatar
rprenger committed
382
383
384

            # Update the context length for the next token generation.
            prev_context_length = context_length
385
386
387
388
389

        if mpu.is_pipeline_last_stage():
            # if cannot find stop token, add open beams to hyps
            if not done:
                for beam_id in range(beam_size):
Peng Xu's avatar
Peng Xu committed
390
                    beam_hyp.add(tokens[beam_id].clone(), scores[beam_id].squeeze(), context_length + 1 - prompt_length)
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

            # rank based on scores
            sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0], reverse=True)
            num_return_gen = min(num_return_gen, len(sorted_hyps))
            scores = [sorted_hyps[i][0] for i in range(num_return_gen)]
            tokens = [sorted_hyps[i][1] for i in range(num_return_gen)]
            scores = torch.stack(scores, dim=0)
            tokens = torch.stack(tokens, dim=0)
            scores_size_tensor = torch.tensor(scores.shape, dtype=torch.int64, device=torch.cuda.current_device())
            tokens_size_tensor = torch.tensor(tokens.shape, dtype=torch.int64, device=torch.cuda.current_device())

        scores_size_tensor = broadcast_from_last_pipeline_stage(1, torch.int64, scores_size_tensor)
        tokens_size_tensor = broadcast_from_last_pipeline_stage(2, torch.int64, tokens_size_tensor)

        scores = broadcast_from_last_to_first_pipeline_stage(tuple(scores_size_tensor), torch.float32, scores)
        tokens = broadcast_from_last_to_first_pipeline_stage(tuple(tokens_size_tensor), torch.int64, tokens)
Peng Xu's avatar
Peng Xu committed
407

rprenger's avatar
rprenger committed
408
    return tokens, scores
mshoeybi's avatar
mshoeybi committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423


def _build_attention_mask_and_position_ids(tokens):
    """Build the attention mask and postition ids for the input tokens."""

    # Since we are not interested in loss-mask and reset attention/position
    # is also False, eod_token is not used so it is safe to set it to None.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
        data=tokens,
        eod_token=None,
        reset_position_ids=False,
        reset_attention_mask=False,
        eod_mask_loss=False)

    return attention_mask, position_ids