import itertools import os import random import time import numpy as np import spacy import torch from torch.utils.data import Dataset from megatron import get_tokenizer, print_rank_0, mpu from megatron.data.bert_dataset import BertDataset from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy #qa_nlp = spacy.load('en_core_web_lg') class RealmDataset(BertDataset): """Dataset containing simple masked sentences for masked language modeling. The dataset should yield sentences just like the regular BertDataset However, this dataset also needs to be able to return a set of blocks given their start and end indices. Presumably """ def __init__(self, name, indexed_dataset, data_prefix, num_epochs, max_num_samples, masked_lm_prob, max_seq_length, short_seq_prob, seed): super(RealmDataset, self).__init__(name, indexed_dataset, data_prefix, num_epochs, max_num_samples, masked_lm_prob, max_seq_length, short_seq_prob, seed) self.build_sample_fn = build_simple_training_sample def build_simple_training_sample(sample, target_seq_length, max_seq_length, vocab_id_list, vocab_id_to_token_dict, cls_id, sep_id, mask_id, pad_id, masked_lm_prob, np_rng): tokens = list(itertools.chain(*sample))[:max_seq_length - 2] tokens, tokentypes = create_single_tokens_and_tokentypes(tokens, cls_id, sep_id) max_predictions_per_seq = masked_lm_prob * max_seq_length (tokens, masked_positions, masked_labels, _) = create_masked_lm_predictions( tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob, cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng) tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np \ = pad_and_convert_to_numpy(tokens, tokentypes, masked_positions, masked_labels, pad_id, max_seq_length) train_sample = { 'tokens': tokens_np, 'labels': labels_np, 'loss_mask': loss_mask_np, 'pad_mask': padding_mask_np } return train_sample def create_single_tokens_and_tokentypes(_tokens, cls_id, sep_id): tokens = [] tokens.append(cls_id) tokens.extend(list(_tokens)) tokens.append(sep_id) tokentypes = [0] * len(tokens) return tokens, tokentypes def spacy_ner(block_text): candidates = {} block = qa_nlp(block_text) starts = [] answers = [] for ent in block.ents: starts.append(int(ent.start_char)) answers.append(str(ent.text)) candidates['starts'] = starts candidates['answers'] = answers class InverseClozeDataset(Dataset): """Dataset containing sentences and their blocks for an inverse cloze task.""" def __init__(self, name, block_dataset, title_dataset, data_prefix, num_epochs, max_num_samples, max_seq_length, short_seq_prob, seed): self.name = name self.seed = seed self.max_seq_length = max_seq_length self.block_dataset = block_dataset self.title_dataset = title_dataset self.short_seq_prob = short_seq_prob self.rng = random.Random(self.seed) self.samples_mapping = self.get_samples_mapping( data_prefix, num_epochs, max_num_samples) self.tokenizer = get_tokenizer() self.vocab_id_list = list(self.tokenizer.inv_vocab.keys()) self.vocab_id_to_token_list = self.tokenizer.inv_vocab self.cls_id = self.tokenizer.cls self.sep_id = self.tokenizer.sep self.mask_id = self.tokenizer.mask self.pad_id = self.tokenizer.pad def __len__(self): return self.samples_mapping.shape[0] def __getitem__(self, idx): start_idx, end_idx, doc_idx, block_idx = self.samples_mapping[idx] title = list(self.title_dataset[int(doc_idx)]) block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)] assert len(block) > 1 # avoid selecting the first or last sentence to be the query. if len(block) == 2: rand_sent_idx = int(self.rng.random() > 0.5) else: rand_sent_idx = self.rng.randint(1, len(block) - 2) # keep the query in the context 10% of the time. if self.rng.random() < 1: query = block[rand_sent_idx].copy() else: query = block.pop(rand_sent_idx) # still need to truncate because blocks are concluded when # the sentence lengths have exceeded max_seq_length. query = query[:self.max_seq_length - 2] block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))] query_tokens, query_pad_mask = self.concat_and_pad_tokens(query) block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title) sample = { 'query_tokens': np.array(query_tokens), 'query_pad_mask': np.array(query_pad_mask), 'block_tokens': np.array(block_tokens), 'block_pad_mask': np.array(block_pad_mask), 'block_data': np.array([start_idx, end_idx, doc_idx, block_idx]).astype(np.int64) } return sample def encode_text(self, text): return self.tokenizer.tokenize(text) def decode_tokens(self, token_ids): tokens = self.tokenizer.tokenizer.convert_ids_to_tokens(token_ids) return ' '.join(token for token in tokens if token != '[PAD]') def get_block(self, start_idx, end_idx, doc_idx): """Get the IDs for an evidence block plus the title of the corresponding document""" block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)] title = list(self.title_dataset[int(doc_idx)]) block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))] block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title) return (block_tokens, block_pad_mask) def concat_and_pad_tokens(self, tokens, title=None): """concat with special tokens and pad sequence to self.max_seq_length""" tokens = [self.cls_id] + tokens + [self.sep_id] if title is not None: tokens += title + [self.sep_id] assert len(tokens) <= self.max_seq_length, len(tokens) num_pad = self.max_seq_length - len(tokens) pad_mask = [1] * len(tokens) + [0] * num_pad tokens += [self.pad_id] * num_pad return tokens, pad_mask def get_samples_mapping(self, data_prefix, num_epochs, max_num_samples): if not num_epochs: if not max_num_samples: raise ValueError("Need to specify either max_num_samples " "or num_epochs") num_epochs = np.iinfo(np.int32).max - 1 if not max_num_samples: max_num_samples = np.iinfo(np.int64).max - 1 # Filename of the index mapping indexmap_filename = data_prefix indexmap_filename += '_{}_indexmap'.format(self.name) if num_epochs != (np.iinfo(np.int32).max - 1): indexmap_filename += '_{}ep'.format(num_epochs) if max_num_samples != (np.iinfo(np.int64).max - 1): indexmap_filename += '_{}mns'.format(max_num_samples) indexmap_filename += '_{}msl'.format(self.max_seq_length) indexmap_filename += '_{}s'.format(self.seed) indexmap_filename += '.npy' # Build the indexed mapping if not exist. if torch.distributed.get_rank() == 0 and \ not os.path.isfile(indexmap_filename): print(' > WARNING: could not find index map file {}, building ' 'the indices on rank 0 ...'.format(indexmap_filename)) # Make sure the types match the helpers input types. assert self.block_dataset.doc_idx.dtype == np.int64 assert self.block_dataset.sizes.dtype == np.int32 # Build samples mapping verbose = torch.distributed.get_rank() == 0 start_time = time.time() print_rank_0(' > building samples index mapping for {} ...'.format( self.name)) from megatron.data.dataset_utils import compile_helper compile_helper() from megatron.data import helpers samples_mapping = helpers.build_blocks_mapping( self.block_dataset.doc_idx, self.block_dataset.sizes, self.title_dataset.sizes, num_epochs, max_num_samples, self.max_seq_length-3, # account for added tokens self.seed, verbose) print_rank_0(' > done building samples index mapping') np.save(indexmap_filename, samples_mapping, allow_pickle=True) print_rank_0(' > saved the index mapping in {}'.format( indexmap_filename)) # Make sure all the ranks have built the mapping print_rank_0(' > elapsed time to build and save samples mapping ' '(seconds): {:4f}'.format( time.time() - start_time)) # This should be a barrier but nccl barrier assumes # device_index=rank which is not the case for model # parallel case counts = torch.cuda.LongTensor([1]) torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) assert counts[0].item() == torch.distributed.get_world_size( group=mpu.get_data_parallel_group()) # Load indexed dataset. print_rank_0(' > loading indexed mapping from {}'.format( indexmap_filename)) start_time = time.time() samples_mapping = np.load(indexmap_filename, allow_pickle=True) print_rank_0(' loaded indexed file in {:3.3f} seconds'.format( time.time() - start_time)) print_rank_0(' total number of samples: {}'.format( samples_mapping.shape[0])) return samples_mapping