hashed_index.py 5.7 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
from collections import defaultdict
import pickle

Neel Kant's avatar
Neel Kant committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


def main():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
    model = load_checkpoint()
    model.eval()
    dataset = get_dataset()
    data_iter = iter(get_dataloader(dataset))

Neel Kant's avatar
Neel Kant committed
28
    hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
29
    hash_matrix = torch.cuda.HalfTensor(np.random.rand(128, 1024))
Neel Kant's avatar
Neel Kant committed
30

31
32
33
34
    #all_input_tokens = []
    #all_input_logits = []
    #all_block_tokens = []
    block_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
35
    all_block_logits = []
36
    all_block_indices = []
37
    my_rank = args.rank
Neel Kant's avatar
Neel Kant committed
38
    i = 0
Neel Kant's avatar
Neel Kant committed
39
40
41
42
    while True:
        try:
            input_tokens, input_types, input_pad_mask, \
            block_tokens, block_token_types, block_pad_mask, block_indices = get_batch(data_iter)
43
        except:
Neel Kant's avatar
Neel Kant committed
44
            break
45
46

        # TODO: make sure input is still in block
Neel Kant's avatar
Neel Kant committed
47
        input_logits, block_logits, _ = model.module.module.forward(
Neel Kant's avatar
Neel Kant committed
48
            input_tokens, input_types, input_pad_mask, block_tokens, block_pad_mask, block_token_types, return_logits=True)
Neel Kant's avatar
Neel Kant committed
49

Neel Kant's avatar
Neel Kant committed
50
        block_hash_pos = torch.matmul(block_logits, hash_matrix)
Neel Kant's avatar
Neel Kant committed
51
52
        block_hash_full = torch.cat((block_hash_pos, -block_hash_pos), axis=1)
        block_hashes = torch.argmax(block_hash_full, axis=1).detach().cpu().numpy()
53
54
        for hash, indices_array in zip(block_hashes, block_indices):
            hash_data[int(hash)].append(indicecs_array)
Neel Kant's avatar
Neel Kant committed
55

56
57
58
        #all_input_tokens.append(input_tokens.detach().cpu().numpy())
        #all_input_logits.append(input_logits.detach().cpu().numpy())
        #all_block_tokens.append(block_tokens.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
59

60
61
        all_block_logits.append(block_logits.detach().cpu().numpy())
        all_block_indices.append(block_indices.detach().cpu().numpy()[:, 3])
62
63
        if i == 1000:
            print(i)
Neel Kant's avatar
Neel Kant committed
64

65
66
        i += 1

67
68
69
    #all_input_tokens = np.array(all_input_tokens).reshape(-1, args.seq_length)
    #all_input_logits = np.array(all_input_logits).reshape(-1, 128)
    #all_block_tokens = np.array(all_block_tokens).reshape(-1, args.seq_length)
Neel Kant's avatar
Neel Kant committed
70
    all_block_logits = np.array(all_block_logits).reshape(-1, 128)
71
72
73
74
75
76
77
78
79
80
81
    all_block_indices = np.array(all_block_indices).reshape(all_block_logits.shape[0])
    for logits, idx in zip(all_block_logits, all_block_indices):
        block_data[idx] = logits

    with open(f'block_data{my_rank}.pkl', 'wb') as block_file:
        pickle.dump(block_data, block_file)

    #np.save(f'input_tokens{my_rank}.npy', all_input_tokens)
    #np.save(f'input_logits{my_rank}.npy', all_input_logits)
    #np.save(f'block_tokens{my_rank}.npy', all_block_tokens)
    #np.save(f'block_logits{my_rank}.npy', all_block_logits)
Neel Kant's avatar
Neel Kant committed
82
83
84
85
86

    for hash, block_indices in hash_data.items():
        hash_data[hash] = np.array(block_indices)

    hash_data['matrix'] = hash_matrix
87
    with open(f'hash_data{my_rank}.pkl', 'wb') as hash_file:
Neel Kant's avatar
Neel Kant committed
88
        pickle.dump(hash_data, hash_file)
Neel Kant's avatar
Neel Kant committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118


def load_checkpoint():
    args = get_args()
    model = get_model(model_provider)

    if isinstance(model, torchDDP):
        model = model.module
    tracker_filename = get_checkpoint_tracker_filename(args.load)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
    checkpoint_name = get_checkpoint_name(args.load, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    model.load_state_dict(state_dict['model'])
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


def get_dataset():
    args = get_args()
Neel Kant's avatar
Neel Kant committed
119
120
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
    titles_dataset = get_indexed_dataset_(args.data_path + '-titles', 'mmap', True)
Neel Kant's avatar
Neel Kant committed
121
122
123

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
124
125
        context_dataset=block_dataset,
        titles_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
126
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
127
128
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


def get_dataloader(dataset):
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
    main()