hashed_index.py 5.26 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
from collections import defaultdict
import pickle

Neel Kant's avatar
Neel Kant committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


def main():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
    model = load_checkpoint()
    model.eval()
    dataset = get_dataset()
    data_iter = iter(get_dataloader(dataset))

Neel Kant's avatar
Neel Kant committed
28
    hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
29
    hash_matrix = torch.cuda.HalfTensor(np.random.rand(128, 1024))
Neel Kant's avatar
Neel Kant committed
30

Neel Kant's avatar
Neel Kant committed
31
32
    all_input_tokens = []
    all_input_logits = []
Neel Kant's avatar
Neel Kant committed
33
34
    all_block_tokens = []
    all_block_logits = []
Neel Kant's avatar
Neel Kant committed
35

36
    my_rank = args.rank
Neel Kant's avatar
Neel Kant committed
37
    i = 0
Neel Kant's avatar
Neel Kant committed
38
39
40
41
    while True:
        try:
            input_tokens, input_types, input_pad_mask, \
            block_tokens, block_token_types, block_pad_mask, block_indices = get_batch(data_iter)
42
        except:
Neel Kant's avatar
Neel Kant committed
43
            break
44
45

        # TODO: make sure input is still in block
Neel Kant's avatar
Neel Kant committed
46
        input_logits, block_logits, _ = model.module.module.forward(
Neel Kant's avatar
Neel Kant committed
47
            input_tokens, input_types, input_pad_mask, block_tokens, block_pad_mask, block_token_types, return_logits=True)
Neel Kant's avatar
Neel Kant committed
48

Neel Kant's avatar
Neel Kant committed
49
        block_hash_pos = torch.matmul(block_logits, hash_matrix)
Neel Kant's avatar
Neel Kant committed
50
51
        block_hash_full = torch.cat((block_hash_pos, -block_hash_pos), axis=1)
        block_hashes = torch.argmax(block_hash_full, axis=1).detach().cpu().numpy()
52
53
        for hash, indices_array in zip(block_hashes, block_indices):
            hash_data[int(hash)].append(indicecs_array)
Neel Kant's avatar
Neel Kant committed
54

Neel Kant's avatar
Neel Kant committed
55
56
        all_input_tokens.append(input_tokens.detach().cpu().numpy())
        all_input_logits.append(input_logits.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
57
        all_block_tokens.append(block_tokens.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
58
        all_block_logits.append(block_logits.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
59

60
61
        if i == 1000:
            print(i)
Neel Kant's avatar
Neel Kant committed
62

63
64
        i += 1

Neel Kant's avatar
Neel Kant committed
65
66
67
68
    all_input_tokens = np.array(all_input_tokens).reshape(-1, args.seq_length)
    all_input_logits = np.array(all_input_logits).reshape(-1, 128)
    all_block_tokens = np.array(all_block_tokens).reshape(-1, args.seq_length)
    all_block_logits = np.array(all_block_logits).reshape(-1, 128)
69
70
71
72
    np.save(f'input_tokens{my_rank}.npy', all_input_tokens)
    np.save(f'input_logits{my_rank}.npy', all_input_logits)
    np.save(f'block_tokens{my_rank}.npy', all_block_tokens)
    np.save(f'block_logits{my_rank}.npy', all_block_logits)
Neel Kant's avatar
Neel Kant committed
73
74
75
76
77

    for hash, block_indices in hash_data.items():
        hash_data[hash] = np.array(block_indices)

    hash_data['matrix'] = hash_matrix
78
    with open(f'hash_data{my_rank}.pkl', 'wb') as hash_file:
Neel Kant's avatar
Neel Kant committed
79
        pickle.dump(hash_data, hash_file)
Neel Kant's avatar
Neel Kant committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109


def load_checkpoint():
    args = get_args()
    model = get_model(model_provider)

    if isinstance(model, torchDDP):
        model = model.module
    tracker_filename = get_checkpoint_tracker_filename(args.load)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
    checkpoint_name = get_checkpoint_name(args.load, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    model.load_state_dict(state_dict['model'])
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


def get_dataset():
    args = get_args()
Neel Kant's avatar
Neel Kant committed
110
111
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
    titles_dataset = get_indexed_dataset_(args.data_path + '-titles', 'mmap', True)
Neel Kant's avatar
Neel Kant committed
112
113
114

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
115
116
        context_dataset=block_dataset,
        titles_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
117
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
118
119
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


def get_dataloader(dataset):
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
    main()