utils.py 5.55 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""General utilities."""
Raul Puri's avatar
Raul Puri committed
17

18
import sys
19

20
import torch
21

Neel Kant's avatar
Neel Kant committed
22
23
from megatron import get_args
from megatron import print_rank_0
24
from megatron import get_adlr_autoresume
25
from megatron import mpu
26
from megatron.checkpointing import save_checkpoint
27

Mohammad's avatar
Mohammad committed
28

29
def average_losses_across_data_parallel_group(losses):
Mohammad's avatar
Mohammad committed
30
    """Reduce a tensor of losses across all GPUs."""
31
    averaged_losses = torch.cat(
Mohammad's avatar
Mohammad committed
32
        [loss.clone().detach().view(1) for loss in losses])
33
34
35
36
    torch.distributed.all_reduce(averaged_losses,
                                 group=mpu.get_data_parallel_group())
    averaged_losses = averaged_losses / \
        torch.distributed.get_world_size(group=mpu.get_data_parallel_group())
Mohammad's avatar
Mohammad committed
37

38
    return averaged_losses
Mohammad's avatar
Mohammad committed
39
40


41
42
43
44
45
46
47
48
def report_memory(name):
    """Simple GPU memory report."""
    mega_bytes = 1024.0 * 1024.0
    string = name + ' memory (MB)'
    string += ' | allocated: {}'.format(
        torch.cuda.memory_allocated() / mega_bytes)
    string += ' | max allocated: {}'.format(
        torch.cuda.max_memory_allocated() / mega_bytes)
49
50
    string += ' | reserved: {}'.format(
        torch.cuda.memory_reserved() / mega_bytes)
51
52
    string += ' | max reserved: {}'.format(
        torch.cuda.max_memory_reserved() / mega_bytes)
53
    if mpu.get_data_parallel_rank() == 0:
54
55
        print("[Rank {}] {}".format(torch.distributed.get_rank(), string),
              flush=True)
56
57
58
59
60
61


def print_params_min_max_norm(optimizer, iteration):
    """Print min, max, and norm of all parameters."""
    index = 0
    rank = torch.distributed.get_rank()
62
    string = 'iteration, rank, index, tensor-model-parallel, min, max, norm\n'
63
    optimizer_ = optimizer.optimizer
64
65
66
67
68
    for param_group in optimizer_.param_groups:
        for param in param_group['params']:
            index += 1
            min_ = param.data.min()
            max_ = param.data.max()
69
            norm = torch.linalg.norm(param.data)
70
            string += '{:7d}, {:4d}, {:4d}, {:2d}, '.format(
71
                iteration, rank, index, int(param.tensor_model_parallel))
72
73
74
75
            string += '{:.6E}, {:.6E}, {:.6E}\n'.format(min_, max_, norm)
    print(string, flush=True)


76
77
78
79
80
def check_adlr_autoresume_termination(iteration, model,
                                      optimizer, lr_scheduler):
    """Check for autoresume signal and exit if it is received."""
    args = get_args()
    autoresume = get_adlr_autoresume()
Mohammad's avatar
Mohammad committed
81
    # Add barrier to ensure consistnecy.
82
    torch.distributed.barrier()
83
    if autoresume.termination_requested():
Mohammad's avatar
Mohammad committed
84
        if args.save:
85
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
Mohammad's avatar
Mohammad committed
86
87
        print_rank_0(">>> autoresume termination request found!")
        if torch.distributed.get_rank() == 0:
88
            autoresume.request_resume()
Mohammad's avatar
Mohammad committed
89
        print_rank_0(">>> training terminated. Returning")
90
91
92
        sys.exit(0)


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
93
94
95
96
def get_ltor_masks_and_position_ids(data,
                                    eod_token,
                                    reset_position_ids,
                                    reset_attention_mask,
97
                                    eod_mask_loss):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
98
99
100
    """Build masks and position id for left to right model."""

    # Extract batch size and sequence length.
101
    micro_batch_size, seq_length = data.size()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
102
103
104

    # Attention mask (lower triangular).
    if reset_attention_mask:
105
        att_mask_batch = micro_batch_size
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    else:
        att_mask_batch = 1
    attention_mask = torch.tril(torch.ones(
        (att_mask_batch, seq_length, seq_length), device=data.device)).view(
            att_mask_batch, 1, seq_length, seq_length)

    # Loss mask.
    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
    if eod_mask_loss:
        loss_mask[data == eod_token] = 0.0

    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)
    # We need to clone as the ids will be modifed based on batch index.
    if reset_position_ids:
        position_ids = position_ids.clone()

    if reset_position_ids or reset_attention_mask:
        # Loop through the batches:
127
        for b in range(micro_batch_size):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
128
129
130
131
132
133
134
135
136
137
138
139
140

            # Find indecies where EOD token is.
            eod_index = position_ids[b, data[b] == eod_token]
            # Detach indecies from positions if going to modify positions.
            if reset_position_ids:
                eod_index = eod_index.clone()

            # Loop through EOD indecies:
            prev_index = 0
            for j in range(eod_index.size()[0]):
                i = eod_index[j]
                # Mask attention loss.
                if reset_attention_mask:
Neel Kant's avatar
Neel Kant committed
141
                    attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
142
143
                # Reset positions.
                if reset_position_ids:
Neel Kant's avatar
Neel Kant committed
144
                    position_ids[b, (i + 1):] -= (i + 1 - prev_index)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
145
146
                    prev_index = i + 1

147
148
    # Convert attention mask to binary:
    attention_mask = (attention_mask < 0.5)
Mohammad's avatar
Mohammad committed
149

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150
    return attention_mask, loss_mask, position_ids
151
152